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Chapter 1

Introduction

Timely risk monitoring in the context of multivariate time series is central for

allocation decisions in financial markets, yet the quest for appropriate models is still

an ongoing one, both in terms of theory and empirics. The challenge of modeling

multivariate time series can be compared to walking on a tightrope. The goal is to

get to the other side, i.e. to uncover the rich dynamics by making use of the abundant

data that has become available to us in the recent decade. We would expect that

more data would immediately result in more information and a better understanding,

yet we witness how the available models may become less reliable in such settings,

both in terms of the computational burden and the statistical properties.

Particular concerns that often reappear in financial data are the nonlinear na-

ture of payoffs and the time variation of market descriptions, say, due to the dis-

ruptive price behavior of markets during crisis times when compared to periods of
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tranquil business conditions. An often employed approach that can capture mul-

tivariate dynamics in financial markets is the path of state space modeling (see

also Durbin and Koopman, 2012). An alternative attempt that requires less com-

putational sophistication while maintaining a systematic modeling framework is the

class of score driven models that have been recently proposed to strike the bal-

ance between numerical feasibility and statistical efficiency. Within economics, the

approach is known as the Generalized Autoregressive Score (GAS) framework of

Creal, Koopman, and Lucas (2013), while signal processing literature refers to it as

adaptive filtering (see also Goodwin and Sin, 2014). Section 1.1 presents the score

driven context as a general framework and discusses the example of modeling dynamic

correlations. Section 1.2 describes some of the similarities of state space models with

the score driven framework. Section 1.3 collects the contributions of the thesis.

1.1 Score driven filtering framework

Consider the generic setting of data yt being described by observation density

p(yt; ft, θ), where ft and θ denote the time-varying and static parameters, respectively.

4
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Score driven models can be cast in the following form

yt ∼ p(yt; ft, θ) (1.1)

st(ft;λ) = I(ft;λ)−a∇(ft;λ) a ∈ {0, 1/2, 1} (1.2)

∇(ft;λ) =
∂ log p(yt; ft, θ)

∂ft
(1.3)

It(ft;λ) = Et−1

[
∇(ft;λ)∇⊤(ft;λ)

]
(1.4)

ft+1 = φy(yt; ft, θ) = φ∇ (st; ft, θ) , (1.5)

where Et[·] denotes the conditional expectation based on information available at time

t and the recursion is initialized at a starting value f1. The information matrix scaling

power a has been customarily set to either 0, 1/2 or 1 for purposes of analytical or

numerical convenience, though more research on the impact of the parameter choice

would further clarify the theoretical underpinnings of the approach. The functional

form φ∇(·) typically designates an intuitive functional form (e.g. of an ARMA-type

such as the recursion discussed in Section 1.1.1 further below) to introduce information

into the system via the scaled score st. Importantly, the GAS model provides one

with a systematic functional form to update time-varying parameters ft. Notably,

the log-likelihood function

LT =
T∑

t=1

log p
(
yt; ft, f1, θ

)

5
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depends on the hyper-parameter θ, where the updating recursion of the time-varying

parameter ft is a measurable function of the past scaled scores st(ft;λ) and therefore

of yt. This classifies the specification in (1.1)–(1.5) as an ‘observation driven model’

in the terminology of Cox (1981). In other words, having conditioned on the data

and knowing the parameters θ, one is able to exactly reconstruct the time-varying

parameter path and the likelihood, which constitutes the main computational appeal

of the model.

1.1.1 Modeling dynamic correlations

Consider the example of a portfolio allocation problem. The key to such a financial

decision making situation lies in the risks associated with alternative choices. In

turn, if one’s portfolio consists of multiple assets, then their correlations determine

the degree of diversification of the overall exposure. However, as correlations are

known to be subject to changes over time (Engle, 2002a), risk monitoring hinges

upon accurate correlation estimation procedures.

The leading motivating example is the bivariate dependence model for financial

6
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returns, denoted by yt,

Σt = Var[yt] (1.6)

Σt =




σ2
1,t ρ(ft)σ1,tσ2,t

ρ(ft)σ1,tσ2,t σ2
2,t


 (1.7)

Fortunately, there is extensive research available for determining the volatility

parameters σ1,t and σ2,t (Andersen et al., 2007; Barndorff-Nielsen, 2002; Corsi, 2009;

Hansen et al., 2012; Harvey, 2013). We focus on different GARCH-type models to

explore the dynamics of the time-varying correlation parameter ρ(ft), where ρ : R →

[−1, 1] is a transformation of the time varying parameter ft.

We next apply the score driven framework to obtain an updating recursion for

the dynamic correlation parameter of a Student’s t(ν) distribution. We further

parametrize the correlation by ρt = ρ(ft) = tanh(ft) and do not scale score by the

information matrix.1 Following the definitions of the score driven framework outlined

in the previous Section 1.1, we can now derive the resulting updating equation for

1The information matrix choice is further motivated in Chapter 3.

7
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the dynamic correlation parameter. This leads to the following system of equations

ft+1 = ω + βft + αs(ρt, yt;λ), f1 = ω/(1− β) (1.8)

s(ρt, yt;λ) =
1

2

1

1− ρ2t
·
[
wt(1 + ρ2t )(y1t + y2t)

2 − wt(1 + ρt)
2(y21t + y22t) + 2ρt(1− ρ2t )

]

(1.9)

wt =
ν + 2

ν − 2 + y⊤t Σ
−1
t yt

,

see also chapters 2 and 3 for a more detailed discussion of this model.

It has been convincingly argued by Creal et al. (2013) that due to the fat tailed

nature of financial returns as modeled by a Student’s t(ν) distribution, the functional

form of s(ρt, yt;λ) should exhibit a robustness feature of bounded news impact curve.

This contrasts with a Gaussian distribution for which outliers can have an unbounded

influence on inference regarding the correlation parameter. Such a robustness feature

has been argued to be crucial due to the limited capability of our models to describe

economic forces and the ever so occasional ‘sigma-events’ (Calvet et al., 2014), i.e.

events that appear unexpected given the manner that real-life events may have been

modeled. For instance, the buildup of financial crises or sudden moves on currency

markets may be difficult predict, while the observed data exhibits extreme movements,

therefore creating a substantial gap between reality and the corresponding model

world.

In order to provide a motivating illustration of this point, we consider alterna-

8
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Figure 1.1: News impact surface of persistent, mean-reverting bivariate correlation
models

Notes: The horizontal axes depict realizations of i.i.d. noise, while the vertical axis marks filtered
correlation prediction for the next period.

tive correlation updating mechanics. We explore three models: the (partly linear)

Dynamic Conditional Correlation (DCC) model, a Gaussian GAS copula model and

finally, a dynamic GAS copula model with fat tails. Figure 1.1 displays the correla-

tion ‘news impact surface’ of a bivariate model (1.8) – (1.9), i.e., the impact of two

normalized returns on their updated contemporaneous Pearson correlation coefficient.

It becomes apparent that the heavy-tailed GAS specification is more resilient than

the DCC specification in case of a single, out-of-the-model event.

9
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1.2 Intuitive properties of GAS models

Complex economic data generating processes require tools that would adequately

describe them in an attempt to unravel the underlying mechanics. In fact, White (see

Granger, 2001, p.470) argues as follows:

One clear conclusion that can be reached is that one can never be sure
that a white noise is not forecastable, either from some nonlinear or time-
varying model or from the use of a wider information set, so one should
never stop trying to find superior models.

According to White’s theorem (see also Granger, 2008), any nonlinear model can

be approximated by a time-varying parameter linear model. The GAS framework pro-

vides an attractive tool to study economic phenomena due to the appeal of a computa-

tionally simple way to a) make parameters time varying; b) accommodate non-linear

dynamic relationships. In this way, GAS models provide a relatively straightforward

way to build approximating models in the sense of White.

However, while empirically and intuitively compelling, theoretical underpinnings

of GAS models have remained less understood prior to the start of the thesis project.

To gain a deeper understanding of the issues, we compare the behavior of GAS mod-

els with computationally more involved non-linear non-Gaussian state space models,

also known as parameter driven models as the time-varying parameters constitute

independent processes and are not necessarily functions of observed data.

10
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Consider the example of a linear dynamic location model with measurement error.

yt = ft + σuut (1.10)

ft = ω + βft−1 + αvt, (ut, vt) ∼ N(02, I2) i.i.d. . (1.11)

We can impose the stationarity constraint |β| < 1 and compute the moments of yt

and ft analytically, see also Table 1.1. Now consider the GAS counterpart to the

model (1.10) – (1.11) as defined by

yt = ft + σuut ut ∼ N(0, 1) i.i.d

ft+1 = ω† + β†ft + α†st(ft;λ) st = It(ft;λ)−
1
2∇(ft;λ)

∇(ft;λ) =
yt − ft
σ2
u

It(ft;λ) =
1

σ2
u

.

where we have used the square root information matrix scaling (a = 1/2) to ensure

that the innovations to the state transition have unit variance.2

The moments for fixed θ = (ω, α, β) and θ† = (ω†, α†, β†), are reported in Table

1.1. The striking pattern is that the moments of the data can be computed by

identical functions that map θ and θ† into their respective population moments. For

the sake of exposition, assume that σ2
u is known. Then, in the just-identified case,

2The square root scaling can also be justified by the Jeffreys’ principle, which in this context
requires that the updating rule is invariant under reparametrizations of the time-varying parameter.
The model with square root information matrix scaling also carries a special role in this thesis: in
Chapter 3 the formulation enforces applicability of the Markov Chain theory, while in Chapter 4 it
is the natural starting point of considering time variation in model mis-specification.

11
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Linear State Space GAS counterpart
Model (1.10)–(1.11) with a = 1/2

Eyt Eft Eft
Var [yt] Var [ft] + σ2

u Var [ft] + σ2
u

Eytyt−1 βE [f 2
t ] + ωE [ft] β†

E [f 2
t ] + ω†

E [ft]
Eft ω/(1− β) ω†/(1− β†)

Var [ft] α2/ (1− β2)
(
α†)2 /

(
1−

(
β†)2)

Table 1.1: Comparison of the unconditional moments implied the linear models

Stochastic Volatility GAS counterpart
Model (1.12)–(1.13) with a = 1/2

Eyt 0 0
Var [yt] E exp(ft) E exp(ft)

=exp(E [ft]− 1
2
Var [ft]) =?

E log y2t Eft + Elog u2t Eft + Elog u2t
Var log y2t Var [ft] + Var [log u2t ] Var [ft] + Var [log u2t ]
Cov

(
log y2t , log y

2
t−1

)
βVar [ft] β†

Var [ft]
Eft ω/(1− β) ω†/(1− β†)

Var [ft] α2/ (1− β2)
(
α†)2 /

(
1−

(
β†)2)

Table 1.2: Comparison of the unconditional moments implied by non-linear models

equating three of the sample moments is sufficient for consistent estimates.

Importantly, the moments of nonlinear and possibly non-Gaussian state space

models also find their counterpart in the observation driven framework. Consider the

plain vanilla stochastic volatility model

yt = exp
(

1

2
ft

)
ut (1.12)

ft = ω + βft−1 + αvt, (ut, vt) ∼ N(02, I2) i.i.d. . (1.13)

12
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In the square root information scaling GAS counterpart of this model, the scaled

score is defined by st = (exp(−ft)y2t − 1) /
√
2. We notice in Table 1.2 that also in

this model, some moments of the data can be calculated by the same function of the

parameters of either the State Space model or its GAS counterpart.

However, the fact that the simulated moments are similar for both models, does

not necessarily imply that both models would behave similarly when filtering the

observed data with a particular potentially mis-specified model. Consider the example

of observing data being generated by the parameter driven model (1.12)–(1.13) which

we denote by P0, while applying the GAS model to filter the observed data, denoted by

P†. In this example, the GAS filtering recursion of the log-variance f †
t = f †

t (yt−1; θ
†),

is given by

f †
t+1 = ω† + β†f †

t + α† 1√
2

(
exp ft

exp f †
t

u2t − 1

)
.

where θ† is determined by minimizing the expected Kullback-Leibler divergence be-

tween the probability distribution implied by parameter driven model P0 and the

probability distribution implied by its GAS counterpart P†, which, in our volatility

modeling example can be expressed as

DKL(P0‖P†) = 1

2
E
[
dt(θ, θ

†) + exp
(
−dt(θ, θ†)

)
− 1
]

dt(θ, θ
†) = f †

t (θ
†)− ft(θ)

13
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As intuitive as the above recursions may seem, they are classified as nonlinear

stochastic difference equations which may be difficult to grasp analytically and for a

large part of this thesis, require a numerical treatment. Some questions immediately

arise: Do recursions such as the ones for f †
t+1 and dt(θ, θ

†) converge in distribution?

What are the meaningful restrictions on the parameters θ†? How to recognize po-

tential mis-specification of the updating recursion to adapt the functional form of

φ∇? Is there a sense in which certain observation driven models are designed to have

the minimal expected Kullback-Leibler divergence DKL(P0‖P†) to parameter driven

alternatives? These are some of the common issues that arise when we analyze novel

observation drive models. The short theoretical background described above is useful

to keep in mind when putting the methodological and empirical contributions of the

thesis into a perspective: we are comparing descriptions of the data with the corre-

sponding properties of the model.

This is where the motivation for this thesis ends and the real work starts. The

following chapters aim to address such questions or hopefully, can provide results that

would help answer these questions some day. We now describe the main contributions

of each of the chapters.

14
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1.3 Outline of thesis

This thesis consists of four main chapters. Each chapter discusses different aspects

of multivariate score driven filtering models. While each chapter is sufficiently self-

contained, there is some benefit in reading the chapters sequentially as the exposition

and notation are fairly linear throughout the thesis.

Chapter 2 (based on joint work with F. Blasques and A. Lucas) extends the pre-

vailing approach of univariate stochastic recurrence equations to a GAS correlation

model. We are interested in verifying circumstances under which the model is sta-

tionary such that we would be able to conduct standard asymptotic inference. Yet

conditions arising from stochastic fixed point theorems are analytically impossible

and numerically difficult to handle, so we resort to worst case contraction conditions.

Complications arise due to multivariate matrix decompositions being not uniquely

defined and this chapter establishes a solution to this indeterminacy in the stochastic

recurrence equations framework. Furthermore, we find that this indeterminacy can

decide whether the theoretical assumptions are empirically applicable.

Chapter 3 proposes an alternative approach to describe the stability of multivari-

ate systems for a class of observation driven models, which also entails GAS corre-

lation specifications. Theoretically, we establish an estimation routine that is robust

to misspecification of the observation density. Empirically, we establish a complete

model to extract information from option markets to help us pin down correlation

levels more precisely and to infer the time-varying correlation risk premia.

15
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Chapter 4 addresses the important question of adjusting score driven updating

recursions to account for static and time-varying sources of mis-specification. As

an example for static misspecification, we consider the leverage effect in the score

driven volatility news impact curve. In other words, we incorporate the observation

that negative equity returns are associated with higher future volatility than positive

returns into the score driven filtering framework. As an example for time-varying

sources of misspecification, we consider models with time-varying long run correlation

levels.

Chapter 5 touches upon a further central theme in modeling multivariate dynamic

systems: striking a balance between parsimony and specification flexibility. The for-

mer is needed in order to avoid the abyss of unreliable inference about the underlying

dynamics when the model can become “too big” relative to the information content

of the data. The latter is needed not to miss any of the central driving mechanisms in

the data by making overly simplified or restrictive assumptions. Whereas in Chapter

3 we stressed parsimony and studied a highly parsimonious and sufficiently inter-

pretable model with a minimum number of time-varying parameters, in Chapter 5 I

present a much more flexible model for multivariate time series dynamics. Despite

its flexibility, the model is still highly parsimonious in its dynamics and concisely

captures the main features of the data. I apply the model to investigate equity mar-

ket contagion, extending the contagion analysis of Diebold and Yilmaz (2009) to a

setting with much more dynamic flexibility of the underlying time series model, and

16
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thus much more flexibility of for the underlying contagion patterns.

Chapter 6 summarizes the contributions in a more detailed manner and puts the

results in a wider perspective.
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Chapter 2

A Stochastic Recurrence Equations

Approach to Score Driven

Dynamic Correlation Models

Abstract. We describe worst-case contraction conditions for a recently proposed class of score

driven dynamic correlation models. These models have important applications in empirical work.

The contraction regions are derived by restricting the conditions in Bougerol (1993) for analytic and

computational convenience. The worst-case contraction regions take a non-standard form and in

particular imply strict stationarity and ergodicity (SE). We show that the non-standard shape of the

sufficiency regions cannot be avoided by reparameterizing the model or by rescaling the score steps in

the transition equation for the correlation parameter. This makes the result markedly different from

the volatility case. Observationally equivalent decompositions of the stochastic recurrence equation

yield regions with different shapes and sizes. We use these results to establish the consistency

and asymptotic normality of the maximum likelihood estimator. We illustrate our results with an

analysis of time-varying correlations between UK and Greek equity indices. We find that also in

empirical applications different decompositions can give rise to different conclusions regarding the

stability of the estimated model.
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2.1 Introduction

Time-variation in correlations is an important feature of economic and finan-

cial data and a crucial ingredient of empirical analyses, such as the assessment of

risk and the construction of investment portfolios. Available models for capturing

the time-variation in correlations include, amongst many others, the BEKK model

of Engle and Kroner (1995b), the switching correlation models of Pelletier (2006),

the DCC model of Engle (2002b) with its adaptation by Aielli (2013), the DECO

model of Engle and Kelly (2012), the dynamic copula models of Patton (2009) and

Oh and Patton (2012), and the score driven models of Creal et al. (2011, 2013) and

Harvey (2013); see also the overviews of Silvennoinen and Teräsvirta (2009) and

Bauwens et al. (2006).

We focus on the stochastic properties of the recently proposed score driven mod-

els of Creal et al. (2011, 2013) and Harvey (2013), which we refer to as generalized

autoregressive score (GAS) models. These models have proved particularly useful

when modeling fat-tailed or skewed data, such as often encountered in empirical fi-

nance; see for example Janus et al. (2014), Harvey and Luati (2014), and Lucas et al.

(2014). The dynamics of correlations and volatilities in these models are driven by

the score of the error distribution. If the latter is fat-tailed, the score driven dynam-

ics automatically correct for influential observations, see Creal et al. (2011). In this

This chapter is largely based on Blasques et al. (2016).
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way, they share some similarities with models from the robust GARCH literature; see

for example Boudt et al. (2013). The score driven approach used in the construction

of GAS models, however, provides a much more general and unified framework for

parameter dynamics that is applicable far beyond the volatility and correlation con-

text; see Creal et al. (2013, 2014) for a range of other examples. In addition, from

a forecasting perspective GAS models often have a similar performance to correctly

specified state-space models, see Koopman et al. (2012).

Despite their proven empirical usefulness, the theoretical properties of GAS mod-

els are less well developed. The complication lies in the highly nonlinear transition

dynamics of the time-varying parameter in typical GAS models. In this paper we con-

tribute to our understanding of the stochastic properties of GAS models for dynamic

correlations. The fundamental question is to understand which parameterizations,

and parameter values generate stationary and ergodic (abbreviated as SE from now

on) time series processes. This offers an important characterization of the stochas-

tic properties of GAS models. SE properties can be combined with the existence of

unconditional moments for the objective function to establish proofs of consistency

and asymptotic normality of extremum estimators; see e.g. Straumann and Mikosch

(2006) for maximum likelihood estimation of nonlinear conditional volatility models,

Francq and Zakoian (2011) and Boussama et al. (2011) for the case of multivariate

GARCH models, and Harvey (2013) for GAS volatility models. For each correlation

model we consider, we identify the parameter values that ensure the SE property and

21



CHAPTER 2. A STOCHASTIC RECURRENCE EQUATIONS APPROACH

call this the ‘SE region’ of the parameter space. To establish SE regions, we follow the

classical average contraction argument for stochastic recurrence relations as laid out

in the sufficient conditions formulated by Bougerol (1993). Given these conditions,

we compute numerically the SE regions for a range of empirically relevant models.

We have four contributions. First, we are the first to derive SE regions for the class

of score driven correlation models that have been suggested recently in the literature.

We show that the SE sufficiency regions take a highly non-standard form, dissimilar to

the familiar triangle and curved triangular shapes for the GARCH model; see Nelson

(1990). In an empirical example, we demonstrate that the conditions for nonlinear

recurrence equations can be used to ensure stationarity of concrete models, applied

on real data. This also extends the results in Blasques et al. (2014b) for volatility and

tail index models with univariate observations to the case of time-varying parameters

and multivariate observations.

Second, we show that the shape and size of the SE sufficiency region as derived

from the conditions of Bougerol (1993) depends on the way the stochastic recurrence

equation for the correlation is constructed from bivariate uncorrelated noise. In par-

ticular, we show that the choice of the square root of the correlation matrix in this

construction has a non-trivial effect on the size of the SE sufficiency region.

Third, we show analytically why the correlation case is markedly different from

the volatility case. For the volatility case, Harvey (2013) shows that modeling the log-

volatility renders the information matrix independent of the time-varying volatility.
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The resulting stochastic recurrence equation becomes linear, and we can use linear

process theory to study the SE properties. A similar feature is generally not available

for the dynamic correlation model: neither a reparametrization of the correlation, nor

a scaling of the score steps, makes the stochastic recurrence equation a linear process.

The reason is that unlike the volatility case, the GAS steps for the correlation model

consist of two separate terms with different nonlinearities in the correlation parameter.

Fourth, we use our SE results to establish the consistency and asymptotic nor-

mality of the ML estimator.

The remainder of this paper is organized as follows. In Section 3.2, we introduce

our model for dynamic bivariate correlations. In Section 2.3 we state the conditions

for the SE sufficiency regions. In Section 2.4 we establish model invertibility as well

as the consistency and asymptotic normality of the ML estimator. In Section 3.4, we

determine the SE regions numerically for a number of different models and provide an

empirical illustration for UK and Greek equity indices. We conclude in Section 3.5.

The appendix gathers the more technical results and derivations.

2.2 Score driven models for correlations

Consider a real-valued bivariate stochastic sequence of observations {yt}t∈N gen-

erated by a zero mean elliptical conditional distribution with a density function of
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the form

p(y⊤t R(ft)
−1yt)

|R(ft)|1/2
. (2.1)

Here p : R+
0 → R

+
0 denotes the so-called real-valued density generator function in

the quadratic form y⊤t R(ft)
−1yt. For example, if yt is conditionally normal, we have

p(x) = (2π)−1 exp(−x/2). We fully focus the exposition on the correlation case by

restricting the variances in R(ft) to unity.1 Note that due to the ellipticity, time-

varying conditional distributions are entirely described by the correlation matrix

R(ft) =




1 ρ(ft)

ρ(ft) 1


 ,

where ρ(ft) ∈ [−δ, δ] with δ ∈ (0, 1) is the dynamic correlation parameter at time t

and {ft}t∈N is real-valued sequence for the time-varying parameter.

The formulation in (2.1) can also be interpreted as a copula model, see the dis-

cussion in Patton (2009). Under the assumptions of stationary marginals and no

volatility spillovers, stability conditions for the copula then lead to stability of the

whole model. The class of elliptical models is also economically interesting, as it

enables an analytic characterization of the resulting portfolio returns and the risk-

return tradeoff; see for example Chamberlain (1983), Owen and Rabinovitch (1983),

and Hamada and Valdez (2008).

Following Creal et al. (2011, 2013), the generalized autoregressive score (GAS)

1Time-varying variances in score driven models have already been dealt with in for example
Creal et al. (2011) and Harvey (2013).
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dynamics for the time-varying parameter ft in (2.1) take the form

ft+1 = ω + βft + αst(ft, yt), t = 1, 2, . . . , (2.2)

st(ft, yt) = S(ft)q(yt, ft), q(yt, ft) =
∂

∂f
log

p(y⊤t R(ft;λ)
−1yt)

|R(ft;λ)|1/2
∣∣∣∣
f=ft

, (2.3)

with an arbitrary fixed initial condition f1 ∈ F . We define the parameter vector

θ ∈ Θ as θ = (ω, α, β, λ), where (ω, α, β) ∈ R
3 is a vector of updating parameters,

and λ ∈ R
nλ allows nλ ≥ 0 density tail shape parameters to be estimated. The

time-invariant parameter space is described by Θ ⊆ R
3+nλ . We suppress dependence

of the scaling and the score on θ by writing st(ft, yt) ≡ st(ft, yt;λ), S(ft) ≡ S(ft;λ),

and q(yt, ft) ≡ q(yt, ft;λ). For the case of the bivariate correlation model (2.1), we

obtain

q(yt, ft) =
ρ̇(ft)

1− ρ(ft)2


ṗ
(
y⊤t R(ft)

−1yt
)

2ρ(ft)y

⊤
t R(ft)

−1yt − y⊤t









0 1

1 0









yt


+ ρ(ft)




(2.4)

with ṗ(x) = ∂ log p(x)/∂x and ρ̇(ft) = ∂ρ(ft;λ)/∂f |f=ft .

Each choice for the scaling function S in (2.3) gives rise to a new GAS model. An

often used choice of S relates to the local curvature of the score as measured by the

information matrix, for example

S(ft;λ) = (It(ft;λ))−a, It(ft;λ) = Et−1[q(yt, f)q(yt, f)
⊤], (2.5)
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where a is typically taken as 0, 1/2 or 1.

The parameter dynamics in (2.2) and (2.3) are intuitive. The time-varying pa-

rameter ft is updated in the (scaled) direction of steepest ascent as measured by the

scaled conditional log observation density at time t. For example, standard GARCH

and BEKK models are special cases of the GAS framework under normality, see

Creal et al. (2013) The GAS set-up is very general and can also easily be applied out-

side the correlation context as long as a conditional observation density is available.

For other examples, including many new models, we again refer to Creal et al. (2013,

2014).

2.3 Contraction conditions

We follow the approach of Blasques et al. (2014b), who consider a treatment of

univariate GAS models. Our stationarity and ergodicity (SE) results build on the

stochastic recurrence relations or iterated random functions approach; see

Diaconis and Freedman (1999) and Wu and Shao (2004). In particular, we use the

sufficient conditions of Bougerol (1993) and results in Straumann and Mikosch (2006)

to establish, for any fixed initial condition f1 ∈ F , exponentially fast almost sure

convergence of the time series {yt, ft(θ, f1)}t∈N generated by (2.1)–(2.3) to a unique

SE solution {yt, ft(θ)}t∈Z.

Let F ⊆ R
k and Y ⊆ R

n denote the sets where ft and yt take values, respectively.
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We have that ρ : F → (−δ, δ) for 0 < δ ≤ 1 and st : F × Y × Θ → R is almost

surely (a.s.) smooth in all its arguments and Lipschitz in f ∈ F . Interestingly, it

turns out from the proof of Lemma 2 below that the Fisher (tanh) transformation is

crucial in ensuring the Lipschitz property of the stochastic recurrence equation for the

time-varying correlation parameter. Using the model as specified in (2.1)–(2.4), we

analyze the stochastic properties of yt and ft via the stochastic recurrence equation

yt = h(ft)ut, h(ft)h(ft)
⊤ = R(ft)

ft+1 = φt(ft; θ) := φ (h(ft)ut, ft; θ) = ω + βft + αS(ft) q(h(ft)ut, ft) t ∈ Z,

(2.6)

and {ut} := {ut}t∈Z is an independent and identically distributed (i.i.d.) sequence

with yt = h(ft)ut. We notice that the dynamics of {ft} in (2.6) are now written in

terms of the innovation sequence {ut} rather than the observed data {yt} by sub-

stituting h(ft)ut for yt. As a result, when seen as a function of f , the shape of

q(h(ft;λ)ut, f), for every ut, is markedly different from that of q(yt, f), for every yt.

This additional dependence on f may either complicate or simplify the nonlinear de-

pendence of ft+1 on ft as embedded in (2.6). Second, the functional form of (2.6)

is not uniquely defined. Each square root h(ft;λ) of the correlation matrix R(ft;λ)

leads to an observationally equivalent model in yt. The choice of h(ft;λ), however, is

not innocuous for determining the size and shape of the SE region, as we see later.

Continuity of φt in ut for every t can be used to ensure that {φt} is an i.i.d. sequence
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of functions. Together with equation (2.6), it then follows directly from Bougerol

(1993) and Straumann and Mikosch (2006) that there is a unique SE solution to (2.1)–

(2.3) if φt is contracting on average, i.e., if the Lyapunov exponent of the mapping is

negative. In particular, we obtain the desired SE result if

E log sup
f,f∗∈F

|φt(f ; θ)− φt(f
∗; θ)|

|f − f ∗| ≤ E log sup
f∈F

∣∣∣∣
∂φt(f ; θ)

∂f

∣∣∣∣ < 0; (2.7)

see Bougerol (1993). In computing the supremum in condition (2.7), f is treated as

a parameter rather than as the random variable ft.

For the score driven dynamic correlation model of Section 3.2, we prove the fol-

lowing result in the Appendix.

Lemma 1. Let Ψ be a class of functions such that for every ψ ∈ Ψ, ψ ∈ C1([−δ, δ],R)

with ψ̇(ρ) = ∂ψ(ρ)/∂ρ = O((1 − ρ2)−1/2). Assume that E|ṗ(u⊤t ut)ui,tuj,t| < ∞ for

i, j ∈ {1, 2}, with ut = (u1,t, u2,t)
⊤. For any fixed initial condition f1 ∈ F , the pro-

cess {ft(θ, f1)}t∈N generated by the dynamic correlation model (2.1)–(2.4) converges

exponentially fast almost surely2 (e.a.s.) to a unique stationary and ergodic solution

{ft(θ)}t∈Z if

inf
ψ∈Ψ

E log sup
f∈F

∣∣∣β + α

(
∂

∂f

(
S(f) ρ̇(f)

1− ρ(f)2

))
g(ρ)(f)k(ut)

+α
S(f) ρ̇(f)2

1− ρ(f)2
ġ(ρ)(f)k(ut)

∣∣∣ < 0, (2.8)

2A sequence {xt} converges exponentially fast almost surely to a sequence {x̃t} if for some

constant c > 1 we have ct · |xt − x̃t| a.s.→ 0 for t→ ∞.
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where

g(ρ) =
(
ρ , ρc2ψ(ρ)−

√
1− ρ2s2ψ(ρ) ,

√
1− ρ2c2ψ(ρ) + ρs2ψ(ρ)

)
, (2.9)

k(ut) =
(
ṗ(u⊤t ut)u

⊤
t ut + 1 , ṗ(u⊤t ut)(u

2
1,t − u22,t) , −2ṗ(u⊤t ut)u1,tu2,t

)⊤
,(2.10)

ġ(ρ) = ∂g(ρ)/ρ, c2ψ(ρ) = cos(2ψ(ρ)), and s2ψ(ρ) = sin(2ψ(ρ)).

We note several features of the result stated in Lemma 1. First, the SE region only

depends directly on the parameters α and β, on the functional forms of S(ft;λ) and

q(h(ft;λ)ut, f), and on the density of ut. The dependence on the latter enters in two

ways, namely through the expectations operator in (2.8) and through the functional

form of k(ut) in (2.10). Also note that the expectations operator in (2.8) does not

necessarily require the second moments of ut to exist. Instead, we only require the

expectation of |ṗ(u⊤t ut)ui,tuj,t| for i, j ∈ {1, 2} to exist. This condition is much weaker,

particularly for fat-tailed elliptical densities. For example, it is easily satisfied for the

bivariate Cauchy distribution, even though neither the second, nor the first moment

exists for this distribution. The continuity and boundedness properties of st can be

verified immediately for parametric distributional forms, notably for the Student’s

t density in Section 2.5.1.3 Therefore, condition (2.8) effectively forms a sufficient

condition for the SE property of the model.

Second, equation (2.8) directly reveals that the correlation case is markedly differ-

3The functional forms for the updating equation for the particular case of the Student’s t distri-
bution are presented in Appendix 2.B.
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ent from the volatility case. For the volatility case, it is shown in Harvey (2013) and

Blasques et al. (2014b) that through a clever choice of parameterization h or scaling

S the scaled score in recurrence relation (2.6) can be made independent of ft. The

SE condition then reduces to the requirement that |β| < 1. In the volatility case

the analogue of the function g(ρ) in (2.9) is scalar valued. In the correlation case,

equation (2.8) shows that through the trivariate nature of the functions g(ρ) and ġ(ρ)

the contraction condition consists of a number of different terms, each with a different

nonlinear dependence on f . It is impossible to off-set all of these simultaneously by

a single choice of scaling function or parameterization. This makes the correlation

model theoretically more interesting in its own right.

Third, the SE sufficient condition in (2.8) has an additional degree of flexibility

provided by the choice of ψ. As follows from the proof of Lemma 1, the function ψ

determines which square root h(ft;λ) is used for the correlation matrix R(ft;λ). For

the purpose of guaranteeing a proper correlation matrix, define ξ(ρ) = arcsin(ρ) −

ψ(ρ), and

h(ft;λ) =




cos(ξ(ρ(ft;λ))) sin(ξ(ρ(ft;λ)))

sin(ψ(ρ(ft;λ))) cos(ψ(ρ(ft;λ)))


 , ψ(ρ(ft;λ)) = kψ · arcsin(ρ(ft;λ)),

(2.11)

for some constant kψ ∈ R, such that h(ft;λ)h(ft;λ)
⊤ = R(ft;λ) for all ψ ∈ Ψ.

This parametrization gives rise to familiar alternatives for matrix roots: For kψ =

30



CHAPTER 2. A STOCHASTIC RECURRENCE EQUATIONS APPROACH

1/2 we obtain the transposition-symmetric matrix root, whereas the choice kψ = 1

reduces to the Cholesky decomposition with y1,t = u1,t and y2,t = ρtu1,t+
√
1− ρ2tu2,t.

Any choice of ψ and thus of h results in an observationally equivalent model for yt.

The dynamic properties of {ft} following from (2.8), however, depend on the precise

ψ in the functional form of φ(·) that is chosen. We therefore obtain a sufficient

condition for SE if (2.7) is satisfied for some choice of ψ ∈ Ψ satisfying the conditions

formulated in Lemma 1. This yields the additional infimum in condition (2.8). A

similar complication is absent in the volatility case; compare Blasques et al. (2014b)

and Harvey (2013).

Fourth, condition (2.8) simplifies for particular choices of parameterizations and

scale functions. For example, if we use the familiar Fisher transformation ρ(ft;λ) =

tanh(ft), we have ρ̇(ft) = 1 − ρ(ft)
2 and the entire middle term in (2.8) vanishes.

For this particular parameterization and fixing the scaling function to S(ft;λ) ≡ 1,

we can even provide further analytical results relating to the optimal choice of the

function ψ. Using a Jensen, triangle, and Cauchy-Schwarz inequality, we obtain a

stricter sufficient condition for SE from (2.8) as

inf
ψ∈Ψ

E sup
f∈F

∣∣β + α(1− ρ(ft;λ)
2)ġ(ρ(ft;λ))k(ut)

∣∣ ≤

|β|+ |α| inf
ψ∈Ψ

E sup
f∈F

∣∣(1− ρ(ft;λ)
2)ġ(ρ(ft;λ))k(ut)

∣∣ ≤

|β|+ |α| E‖k(ut)‖ · inf
ψ∈Ψ

sup
f∈F

∥∥(1− ρ(ft;λ)
2) ġ(ρ(ft;λ))

∥∥ < 1, (2.12)
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where ‖ · ‖ denotes the standard Euclidean norm. Instead of the Cauchy-Schwarz

inequality, we can also use a second triangle inequality to obtain the alternative

stricter sufficient condition

|β|+ |α| inf
ψ∈Ψ

E sup
f∈F

∣∣(1− ρ(ft;λ)
2)ġ(ρ(ft;λ))k(ut)

∣∣ ≤

|β|+ |α| inf
ψ∈Ψ

3∑

i=1

sup
f∈F

∣∣(1− ρ(ft;λ)
2) ġi((ρ(ft;λ)))

∣∣ · E |ki(ut)| < 1, (2.13)

where ġi and ki are the ith elements of ġ and k, respectively. Using either of the more

stringent SE conditions (2.12) or (2.13), we obtain the following result.

Lemma 2. Under the assumptions stated in Lemma 1, setting ψ(ρ) = kψ arcsin(ρ)

with kψ = 1/2 reaches the functional lower bound for the sufficient condition stated in

either equation (2.12) or (2.13). The condition then reduces to |β|+ |α| E‖k(ut)‖ < 1

for condition (2.12) and |β| + |α| E|k1(ut)| < 1 for condition (2.13), respectively,

where k1(ut) is the first element of k(ut). The link function becomes the symmetric

matrix root

h(ft;λ) =




cos
(
arcsin(ρ(ft;λ))/2

)
sin
(
arcsin(ρ(ft;λ))/2

)

sin
(
arcsin(ρ(ft;λ))/2

)
cos
(
arcsin(ρ(ft;λ))/2

)


 .

The result in Lemma 2 shows that we uniformly obtain the largest SE region for

the stricter conditions (2.12) or (2.13) for the symmetric matrix root h in (2.6). The

choice of h in setting up the dynamic equation (2.6) is thus far from innocuous and
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directly influences the size and shape of the SE region.

2.4 Asymptotic properties of the maxi-

mum likelihood estimator

In this section we establish the invertibility of the GAS model, as well as the

consistency and asymptotic normality of the ML estimator (MLE) for the static

parameters θ.

Model invertibility is a critical element in the proof of consistency and asymptotic

normality of the MLE since the filter (2.2) enters the likelihood function and must thus

be ensured to have appropriate stochastic properties. Similarly to Straumann and Mikosch

(2006), this section uses the contraction condition of Bougerol (1993) in order to en-

sure model invertibility and bounded moments for the filtering sequence. This is

crucial for the asymptotic properties of the MLE since the initialized time-varying

parameter and its derivatives enter the likelihood function and its derivatives. The

following result builds on the SE nature of the data {yt}t∈Z which follows easily from

the SE nature of the true time-varying parameter {ft}t∈Z established in the previous

section.

Lemma 3. (Model Invertibility) Let Θ be compact, let {yt}t∈Z generated by (2.1)–

(2.3) be SE, let the scaled score s be smooth in all arguments and Lipschitz in f ∈ F ,
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and assume that there exists a non-random f1 such that

(i) E log+ |S(f1)q(f1, yt)| <∞

(ii) E log supθ∈Θ supf∗
∣∣∣α
(
Ṡ(f ∗)q(f ∗, yt) + S(f ∗)q̇(f ∗, yt)

)
+ β

∣∣∣ < 1, f ∗ ∈ F

where log+ x ≡ max(log x, 0) for x ∈ R+ and q(ft, yt) is the score expression in (2.4).

Then the GAS recursion {ft(θ, f1)}t∈N defined in (2.2) converges e.a.s. to a unique

limit SE process {ft(θ)}t∈Z that admits the representation ft(θ) = Φ(yt−1, yt−2, ...) for

every t and some measurable function Φ.

Note that the contraction condition (ii) in Lemma 3 is different from the one

studied in Lemma 1 since it refers to the filtering equation that takes the data yt as

given. By contrast, the contraction property in Lemma 1 looks at the GAS model

as a data generating process, and hence defined the data yt in terms of the true

unknown parameter ft and the innovations ut. In other words, while Lemma 1 deals

with simulated data, Lemma 3 deals with observed data. The invertibility condition

above is in particular required in order to make dependence on the fixed initial value

f1 vanish in the GAS recursion and therefore in the objective function. To make this

transparent, let ℓt(θ, f1) denote the time t log-likelihood contribution for the vector

of static parameters θ, and

LT (θ) :=
1

T

T∑

t=1

ℓt(θ) =
1

T

T∑

t=1

(
log p(y⊤t R(ft(θ, f1))yt)− log |R(ft(θ, f1))|1/2

)
.

(2.14)
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Define LT (θ) and ℓt(θ) similar to (2.14), but with the limiting process ft(θ) replacing

ft(θ, f1).

Theorem 1 establishes the strong consistency of the MLE assuming the identifi-

cation of the true parameter vector θ0 ∈ Θ. The strong consistency result holds for

every initialization of the filter satisfying the conditions of Lemma 3.

Theorem 1. (Consistency) Let (Θ,B(Θ)) be a compact measurable space and let the

conditions of Lemmas 1 and 3 hold. Furthermore, assume that E supθ∈Θ |ℓt(θ)| < ∞

and that θ0 ∈ Θ is the unique maximizer of L∞(θ) ≡ Eℓt(θ). Then, for every f1 ∈ F ,

the MLE, defined as θ̂T (f1) := argmaxθ∈Θ LT (θ) satisfies θ̂T (f1) a.s.→ θ0 as T → ∞.

Theorem 2 establishes the asymptotic normality of the MLE. In this theorem we let

I(θ0) := −Eℓ̈t(θ0) denote the Fisher information matrix and J (θ0) := Eℓ̇t(θ0)ℓ̇t(θ0)
⊤

is the expected outer product of gradients, with ℓ̇t(θ) and ℓ̈t(θ) denoting first and

second order derivatives of ℓt(θ) with respect to θ, respectively.

Theorem 2. (Asymptotic Normality) Let the conditions of Theorem 1 hold and let

θ0 be a point in the interior of Θ. Furthermore, let the first and second derivatives of

the log likelihood contributions ℓt(θ) be asymptotically SE and satisfy E|ℓ̇t(θ0)|2 < ∞

and E supθ∈Θ |ℓ̈t(θ)| <∞. Then, for every f1 ∈ F , the ML estimator θ̂T (f1) satisfies

√
T (θ̂T (f1)− θ0)

d→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T → ∞.

The theoretical results in the previous two theorems are supported by unreported
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simulation experiments. We find that increasing the sample size brings the ML esti-

mates over repeated Monte Carlo replications closer to their true values in a controlled

setting. Moreover, we also find that the distribution of the estimator approaches the

normal distribution for increasing sample sizes.

2.5 Numerical and empirical results

2.5.1 Numerical results

Alternative choices for the error density generator p, the scaling function S, the

parameterization ρ, and the matrix square root h give rise to different models with

different SE regions. For a number of these choices, we check for every pair (α, β)

whether the sufficient condition (2.8) is satisfied. We plot the SE region in the (α, β)-

plane by numerically identifying, for every fixed β, the corresponding maximum and

minimum values of α that satisfy (2.8).

We propose the following computationally efficient algorithm to speed up the

computations. The maximization inside the worst case contraction condition (2.7) can

be conducted in two steps – separating the effect of score from the static parameters

(α, β).

Lemma 4. The calculation of the score-driven contraction property obeys the follow-
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ing identity

E log sup
f∈F

|β + αṡ(f, α, β, u, ψ)| = E logmax{|β + α sup
f
ṡ(f, u, ψ)|, |β + α inf

f
ṡ(f, u, ψ)|}.

In other words, computation of the extremal scores supf ṡ(f, u, ψ) is sufficient for

obtaining the extremal scores for any other (α′, β′). Even though for fixed (α, β) this

representation requires twice the floating point operations as for any other (α′, β′)

we can reuse the up and down extremal scores. The computational effort then grows

linearly with the number of points considered, whereas performing the original com-

putation for every (α, β) grows with a higher polynomial degree.

To fix ideas, consider the class of Student’s t densities for ut as in Creal et al.

(2011). The Fisher transformation ρ(ft) = tanh(ft) ensures proper value for the

correlation parameter. As indicated in Section 2.3, this also simplifies the evaluation

of the SE condition in Lemma 1. For the scaling function S, we adopt the three

choices based on the information matrix as presented in equation (2.5).

Next, we investigate the sensitivity of the SE region to the choice of matrix root

h(·). For this, we consider two prominent alternatives, both described by ψ(ρ) =

kψ arcsin(ρ) for kψ ∈ R. The first alternative is the symmetric matrix root of Lemma 2

with kψ = 1/2. The second is the familiar (lower triangular) Cholesky decomposition,

which is obtained by setting kψ = 1.

To numerically evaluate the sufficient SE condition (2.8), we need to solve an opti-
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Figure 2.1: Contraction sufficiency regions for the normal distribution and different
scaling choices S(ft;λ) = (It(ft;λ))−a for a ∈ {0, 1/2, 1}

Notes: The two panels contain different regions obtained by parameterizing the matrix roots
h(ft;λ) with ψ(ρ) = kψ arcsin(ρ). Panel (a) contains the results for the symmetric matrix root
(kψ = 1/2) and panel (b) corresponds to the Cholesky decomposition (kψ = 1).

mization problem within an integration procedure. As the state equation is univariate,

the integral can be evaluated via a quadrature rule. We can gain further numerical

efficiency for the inner optimization problem by storing maximum and minimum val-

ues of S(ft;λ) q(h(ft;λ)ut, f) for each point ut and recycling these for evaluation at

different points in the (α, β)-plane as described by Lemma 4. We avoid local optima

by evaluating the function over a wide grid and by noting that for the Student’s t

distribution (∂/∂f)ist(ft;λ) → 0 as |f | → ∞ for all i > 1. We can further halve the

computation time by noting that in our setting |∂φt(f ; θ)/∂f | = |∂φt(f ;−θ)/∂f |.

38



CHAPTER 2. A STOCHASTIC RECURRENCE EQUATIONS APPROACH

In panel (a) of Figure 2.1, we present the results for the normal distribution and

the symmetric root h(ft;λ), i.e., kψ = 1/2. The figure contains three different regions,

each one corresponding to a different form of scaling in equation (2.5). Points inside

each region are combinations of (α, β) for which the sufficient condition (2.8) is met.

The shape of the sufficient SE region is anti-symmetric around the origin due to the

absolute signs in (2.8), such that we only plot its upper half. The region also shows

a non-monotonic curvature, particularly in the second quadrant. This feature is due

to the use of absolute values, the change in the location of the supremum in (2.8) in

the second quadrant, and a shift in the relevant region of integration if the derivative

of S(ft;λ)q(h(ft;λ)ut, f) changes sign.

An interesting feature in Figure 2.1 is the behavior of the region for square root

inverse information matrix scaling, a = 1/2 in (2.5). First note that a = 1/2 has the

property that the update via st(ft, yt) is invariant with respect to reparametrizations

of ft. Furthermore, under correct specification the steps S(ft;λ)q(yt, f) in (2.4) are

by construction martingale differences with unit variance; see also Creal et al. (2013).

This implies that {ft}t∈N converges to a covariance stationary process as long as

|β| < 1. The region in Figure 2.1 shows that |β| < 1 is necessary, but not sufficient

for (2.8) to be satisfied. This relates directly to discussions in the GARCH literature,

where in the univariate setting covariance stationarity is a more restrictive condition

than strict stationarity, but the relation between the two remains an open question

in a multivariate context; see for example Boussama et al. (2011).
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Panel (b) in Figure 2.1 shows the different SE regions for a different choice of ma-

trix root h(ft;λ), namely the Cholesky decomposition. It is clear that the sufficiency

regions in the (α, β)-plane are smaller than the corresponding regions for the sym-

metric root. As models constructed with a symmetric root and a Cholesky root are

observationally equivalent, we can take the larger regions as sufficient regions for SE

to hold; see also Lemma 2. The differences make clear that the choice of matrix root

is important for determining the size of the region either analytically or numerically.

We provide more SE regions in Appendix 2.C, including regions based on the

further inequalities used to establish Lemma 2. In particular, we show that the SE

regions for the Student’s t distribution under square root information matrix scaling

(a = 1/2) are smaller for fatter tails if the Cholesky decomposition is used (kψ = 1),

while the converse holds if we use the symmetric root decomposition (kψ = 1/2). In

the Section 2.5.2 we document how this wedge may also become empirically relevant.

2.5.2 Empirical illustration

In this section we study the time-varying correlation between the London and

Athens stock exchange. We take daily returns of the FTSE 100 and the Athex

Composite over the period January 1, 2002 to March 2, 2013. We are particularly

interested in whether there are indications that the correlation between these two

markets changed over the course of the European sovereign debt crisis.

To focus on the correlation part of the model, we first filter both series using AR-
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GARCH type models; see also Patton (2009). The mean of both series is modeled

by a first order autoregressive progress. We find a strong leverage effects in both

series and capture these by a GJR(1,2) model of Glosten et al. (1993) for the FTSE

index, and an EGARCH(1,2) specification of Nelson (1991) for the Athens index,

respectively.4 We test the null hypothesis of constant and zero residual correlation

against time-varying alternatives using a Nyblom test of the form

NBc =
1

σ̂2

1

T

T∑

t=1

(
1√
T

t∑

s=1

(x1sx2s − ρ̄)

)2

d→
∫ 1

0

Bb(z)
2 dz

NB0 =
1

σ̂2
0

1

T

T∑

t=1

(
1√
T

t∑

s=1

x1sx2s

)2

d→
∫ 1

0

B(z)2 dz,

where B(z) and Bb(z) = B(z) − zB(1) denote a standard Brownian motion and

a standard Brownian bridge, respectively. The average correlation is estimated by

ρ̄ = T−1
∑T

t=1 x1tx2t and σ̂2 is a heteroskedasticity and autocorrelation consistent

estimator of the long-run variance of (x1tx2t− ρ̄), with σ̂2
0 defined similarly when ρ̄ is

set to 0.5 By letting xt denote the univariate volatility-filtered series, i.e. xt := yt in

the notation of our paper, we find strong evidence for time-varying correlations. We

therefore use the filtered univariate series to estimate the GAS model from Section 3.2

with a time varying correlation coefficient. The Nyblom test can further be used as

a diagnostic for remaining time-variation in dynamic correlations when applied to

4Further robustness results for alternative specifications for the marginals can be found in Ap-
pendix 2.D.

5Critical values of the test are simulated by discretizing the processes B(·) and Bb(·) and can
also be found in Hansen (1992).
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Figure 2.2: Empirical results

Notes: Panel (a) shows 60-day rolling correlations and the filtered correlations between the FTSE
100 (UK) and Athex Composite (Greece) equity index returns. Panel (b) on the right puts the
empirical estimates obtained by unconstrained estimation into the zoomed stationarity and
ergodicity region perspective. The red cross depicts the empirical point estimate of the model,
while the solid (dashed) line marks the contraction region when using symmetric (Cholesky)
decomposition of the correlation matrix.

estimated residuals xt := ût = h−1 ˆ(ft)yt. The results are shown in Figure 2.2 and

Table 2.1.

Panel (a) in Figure 2.2 shows the dynamic correlations between the filtered series.

As a non-parametric benchmark, we plot simple 60-day rolling window correlations.

The rolling window estimates suggest that correlations exhibit clear signs of time

variation. Correlations lie around 0.4 up to about 2006, then increase to about 0.6,

and come down substantially to around 0.2 during the sovereign debt crisis. On top of

this slow variation, there are also substantial dynamic patters at higher frequencies.

The possibly lower correlations between the UK and Greek stock indices are inter-
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esting economically, particularly given the stable correlation pattern between the two

series during almost the whole of the prelude, height, and aftermath of the preceding

financial crisis (2007–2009). The financial crisis, apparently, did not substantially

alter the real economic linkages between the two economies as evidenced by the sta-

ble dynamic of the correlations between the two stock markets. It is only after the

announcement of the record Greek deficit late 2009 and the subsequent actions that

gave rise to the European sovereign debt crisis, that the link between the euro de-

nominated Greek stock market and the sterling denominated FTSE is broken. The

correlations remain at low levels even after the non-standard monetary policy actions

by the European Central Bank.

Table 2.1 provides the parameter estimates of the GAS models. We provide a

benchmark by estimating a simple exponentially weighted moving average (EWMA)

scheme for the correlation based on the recursion ρt = tanh(ft) and

ft+1 = ω + βft + (1− β)y1ty2t,

see also the Gaussian dynamic copula specification of Patton (2006b).

We see that the GAS model is empirically useful both in terms of in-sample

likelihood fit and improving the diagnostics for time-varying correlation. All models

indicate that the correlation parameter is highly persistent: the estimated values of β

all lie very close to 1. The scaling function for the score only has a mild effect on the
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H Table 2.1: Estimation Results

Notes: The table reports estimation output for the models discussed in Section 2.5.2. For the GAS model specifications, we also compute
whether the contraction property holds for symmetric and Cholesky decompositions of the correlation matrix. Heteroskedasticity and
autocorrelation consistent (HAC) standard errors are in parentheses. Best log-likelihood, AIC, and BIC values across models are printed in
boldface. H5%

0 : ρt ≡ 0 and H5%
0 : ρt ≡ ρ̄ indicate whether the Nyblom test among residuals rejects constant zero or estimated correlation,

respectively. HAC standard errors are computed using Newey-West weights with min(⌊1.2× T 1/3⌋, T ) lags.

EWMA EWMA EWMA t(∞)-GAS t(∞)-GAS t(∞)-GAS t(5)-GAS t(5)-GAS t(5)-GAS t(λ)-GAS
(a = 0) (a = 1/2) (a = 1) (a = 0) (a = 1/2) (a = 1) (a = 1)

λ 5 5 8.9321 ∞ ∞ ∞ 5 5 5 9.1411
(0.0801) (0.9287)

ω 0.0003 0.0012 0.0117 0.0115 0.0112 0.0089 0.0089 0.0088 0.0114
(0.0003) (0.0003) (0.0016) (0.0014) (0.0013) (0.0011) (0.0011) (0.0010) (0.0013)

α 0.0254 0.0283 0.0314 0.0335 0.0316 0.0297 0.0360
(0.0040) (0.0045) (0.0050) (0.0048) (0.0046) (0.0043) (0.0050)

β 0.9757 0.9756 0.9739 0.9752 0.9757 0.9763 0.9797 0.9798 0.9800 0.9762
(0.0085) (0.0063) (0.0030) (0.0021) (0.0016) (0.0012) (0.0013) (0.0011) (0.0009) (0.0012)

Log-likelihood −7847 −7847 −7812 −7891 −7890 −7890 −7845 −7845 −7845 −7809

AIC 15697 15699 15631 15778 15787 15787 15696 15696 15696 15626

BIC 15703 15711 15649 15814 15805 15805 15714 15714 15714 15649

# parameters 1 2 3 3 3 3 3 3 3 4

H5%
0 : ρt ≡ 0 reject reject reject reject reject

H5%
0 : ρt ≡ ρ̄ reject reject reject reject reject reject reject reject

Inside SE region?
Cholesky (kψ = 1) Yes Yes No No No No No
Symmetric (kψ = 1

2
) Yes Yes Yes Yes Yes Yes Yes
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model’s fit: the likelihood values are similar for every a ∈ {0, 1/2, 1}. The degrees of

freedom parameter λ is estimated around 9. This is substantially fatter-tailed than

the normal, but also substantially lighter-tailed than the Student’s t distribution with

the degrees of freedom fixed at 5. The differences in likelihood values, as well as Akaike

(AIC) and Bayes (BIC) information criteria indicate that estimating the degrees of

freedom improves the fit of the model significantly. Furthermore, the estimation of

the tail parameter λ also improves the fit in terms of model diagnostics: only the

GAS model with estimated degrees of freedom passes the Nyblom tests for remaining

time-variation in the residual cross-correlations.

We plot the SE region boundaries for the Cholesky and the symmetric root de-

composition in panel (b) of Figure 2.2. The estimated values of α and β for the

t(λ)-GAS specification are indicated by the cross mark. The results clearly confirm

the importance of the choice of ψ in verifying the SE properties. For the symmetric

root based region, we obtain stationarity and ergodicity at the estimated parameter

values. For the Cholesky decomposition, by contrast, we fail to obtain this result. As

condition (2.8) takes the infimum over ψ and thus the widest region in panel (b) over

all admissible decompositions h(ft), the Cholesky decomposition is in this setting less

powerful to discriminate SE from non-SE regions of the parameter space. We stress

again that all of these regions are only based on sufficient conditions, and that the

actual regions may be wider.

For all models considered, the bottom lines in Table 2.1 indicate whether the
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estimated parameters lie inside the SE region. For the Gaussian models with unit

(a = 0) and inverse square root information matrix scaling (a = 1/2) the choice of

matrix decomposition does not have an impact. Both the symmetric root (kψ = 1/2

in (2.11)) and Cholesky root (kψ = 1 in (2.11)) indicate that the estimated parameters

are inside the SE region and satisfy the average contraction condition. For inverse

information matrix scaling, however, and for the Student’s t based models, we find a

similar difference as in panel (b) of Figure 2.2: we cannot ensure SE properties based

on the Cholesky decomposition, whereas we can do so for the symmetric root. This

again highlights that the use of different constructive devices such as different matrix

decompositions is empirically relevant for the verification of sufficient SE conditions

in a multivariate setting.

2.6 Concluding remarks

We have derived sufficient regions for stationarity and ergodicity for a new class of

score driven dynamic correlation models. The regions exhibit a highly non-standard

shape. Moreover, we have shown that the shape and size of the SE regions depends on

the type of matrix root that is chosen in checking the sufficient conditions of Bougerol

(1993). Furthermore, we have seen how the stationarity conditions can be used in

establishing results for consistency and asymptotic normality of the maximum likeli-

hood estimator. The numerical stability conditions were supported by an empirical
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investigation of the time varying correlation between UK and Greek stock markets.

We found a substantial drop in the linkages between the sterling denominated UK

market and the euro denominated Greek market over the course of the European

sovereign debt crisis. Such a break in dependence between markets, however, was

absent during the preceding global financial crisis.
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Symmetric decomposition, using 1−step recursion
Symmetric decomposition, using 2−step recursion
Cholesky decomposition, using 1−step recursion
Choleski decomposition, using 2−step recursion

Figure 2.3: Comparison of worst case contractions for different recursion step lengths

Notes: Gaussian model with unit scaling.

Looking forward, we are further interested in establishing sharp properties that

go beyond the worst case single-step limiting recursions. By considering a multi-

step recursion in Figure 2.3, one can relax the sufficiency regions at the expense of

a painfully expensive computational burden. An interesting possible extension of
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our current results concerns a generalization to the fully multivariate (rather than

bivariate) setting of score driven correlation models proposed in Creal et al. (2011).

Due to the difficulties of the contraction condition under multivariate time-varying

parameters as pointed out by (Boussama, 1998, p. 131), we will follow a distributional

approach, as opposed to the pathwise properties explored in the current chapter. This

enables us to give sharper bounds for stationarity and ergodicity in the context of

even very high-dimensional dynamic correlation models.
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2.A Proofs

We first state Theorem 3.1 of Bougerol (1993). Denote by log Λ(φ0) the term

inside the expectation on the left hand side of (2.7).

Theorem 3 (Bougerol (1993, Theorem 3.1)). Let {φt} be a stationary and ergodic

sequence of Lipschitz maps φt : F → F . Assume

1. There exists a f ∈ F and distance measure d such that E[log+ d(φ0(f), f)] <∞;

2. E[log+ Λ(φ0)] <∞;

3. E[log Λ(φ
(r)
0 )] < 0, where φ

(r)
0 denotes the r-fold backward iterates.

Then the stochastic recurrence equation (2.6) admits a unique stationary ergodic so-

lution {ft}.

Proof of Lemma 1. The SE property of {ft} follows from the measurability with

respect to {ut}. The Lipschitz property is obtained from the boundedness of the

terms in equation (2.20) below. Condition 1 is then ensured by the definition of

the GAS transition equation and the assumed moments in Lemma 1, as we can

write E[log+ d(φ0(f), f)] ≤ E|φ0(f) − f | = E|ω + (β − 1)f + αS(f)q(h(f)u0, f)| ≤

|ω|+ |(β−1)f |+αE|S(f)q(h(f)u0, f)|. As requirement 2 is implied by 3, we can now

turn our main interest towards the study of the latter, non-trivial, condition 3.
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We write ξ and ψ for ξ(ρ) and ψ(ρ), respectively. Define the shorthand notation

cw = cw(ρ) = cos(w(ρ)) with w : [−δ, δ] → R, and similarly sw = sw(ρ) = sin(w(ρ)).

Each matrix root h of the correlation matrix can be written as

h(ft;λ) =




cξ(ρ(ft;λ)) sξ(ρ(ft;λ))

sψ(ρ(ft;λ)) cψ(ρ(ft;λ))


 . (2.15)

Using (2.15), we obtain




cξ sξ

sψ cψ







cξ sψ

sξ cψ


 =




1 sξ+ψ

sξ+ψ 1


 ,

such that we require sin(ψ + ξ) = ρ or ξ(ρ) = arcsin(ρ) − ψ(ρ) for some arbitrary

function ψ(ρ). It follows that sξ = ρcψ−
√
1− ρ2sψ, and cξ =

√
1− ρ2cψ+ρsψ. From

this we obtain




cξ sψ

sξ cψ







0 1

1 0







cξ sξ

sψ cψ


 =




2cξsψ sξsψ + cξcψ

sξsψ + cξcψ 2sξcψ


 =




2cξsψ cξ−ψ

cξ−ψ 2sξcψ


 =




−ρc2ψ +
√

1− ρ2s2ψ + ρ
√

1− ρ2c2ψ + ρs2ψ

√
1− ρ2c2ψ + ρs2ψ ρc2ψ −

√
1− ρ2s2ψ + ρ


 =: H(ρ) + ρI.
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Using yt = h(ft;λ)ut, we can rewrite (2.4) as

(1− ρ(ft;λ)
2)q(h(ft;λ)ut, f)/ρ̇(ft;λ) =

2ṗ(u⊤t ut)ρ(ft;λ)u
⊤
t ut − ṗ(u⊤t ut)u

⊤
t (H(ρ(ft;λ)) + ρ(ft;λ)I) ut + ρ(ft;λ) =

ṗ(u⊤t ut)ρ(ft;λ)u
⊤
t ut − ṗ(u⊤t ut)u

⊤
t H(ρ(ft;λ))ut + ρ(ft;λ) =

ρ(ft;λ)
(
ṗ(u⊤t ut)u

⊤
t ut + 1

)
− ṗ(u⊤t ut)u

⊤
t H(ρ(ft;λ))ut = g(ρ)k(ut),

(2.16)

with

g(ρ) =
(
ρ , ρc2ψ −

√
1− ρ2s2ψ ,

√
1− ρ2c2ψ + ρs2ψ

)
,

k(ut) =
(
ṗ(u⊤t ut)u

⊤
t ut + 1 , ṗ(u⊤t ut)(u

2
1,t − u22,t) , −2ṗ(u⊤t ut)u1,tu2,t

)⊤
,

and ut = (u1,t, u2,t)
⊤. Defining ġ(ρ) = ∂g(ρ)/ρ as the derivative of g(ρ), it holds that

ġ(ρ) =
(
1 , c2ψ(ρ) + ρ · (1− ρ2)−1/2s2ψ(ρ) , −ρ · (1− ρ2)−1/2c2ψ(ρ) + s2ψ(ρ)

)
+

2ψ̇(ρ)
(
0 , −ρs2ψ(ρ)−

√
1− ρ2c2ψ(ρ) , −

√
1− ρ2s2ψ(ρ) + ρc2ψ(ρ)

)
,(2.17)

= (1, 0, 0) +
(
(1− ρ2)−1/2 − 2ψ̇(ρ)

)
·

(
0 ,
√
1− ρ2c2ψ(ρ) + ρ · s2ψ(ρ) ,

√
1− ρ2s2ψ(ρ)− ρ · c2ψ(ρ)

)
. (2.18)
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The definitions in (2.6) and (2.16) then imply that (2.7) can be written as

∂φt(f ; θ)

∂f
= β + α

(
∂

∂f

(
S(ft;λ) ρ̇(ft;λ)

1− ρ(ft;λ)2

))
g(ρ(ft;λ))k(ut)

+ α
S(ft;λ) ρ̇(ft;λ)

1− ρ(ft;λ)2
∂g(ρ(ft;λ))

∂f
k(ut). (2.19)

Proof of Lemma 2. Using (2.18), we can rewrite ‖ġ(ρ)‖2 as

1 +

∣∣∣∣∣
1√

1− ρ2
− 2ψ̇(ρ)

∣∣∣∣∣

2

·
(
c2ψ(ρ)

2 + s2ψ(ρ)
2
)
= 1 +

∣∣∣∣∣
1√

1− ρ2
− 2ψ̇(ρ)

∣∣∣∣∣

2

≥ 1. (2.20)

For ψ(ρ) = arcsin(ρ)/2 the second term vanishes and we obtain the functional lower

bound (1−ρ2)·‖ġ(ρ)‖2 = 1−ρ2, which reaches its supremum of 1 at ρ = 0. The rest of

the result follows directly from the definition of ξ(ρ) = arcsin(ρ)−ψ(ρ) = arcsin(ρ)/2.

For computational reasons, it may be useful to note that

‖k(ut)‖2 = 2ṗ(u⊤t ut)
2(u⊤t ut)

2 + 2ṗ(u⊤t ut)(u
⊤
t ut) + 1,

which only depends on the quadratic form u⊤t ut.

An analogous line of reasoning holds for condition (2.13) based on applying the

triangle inequality twice.
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Proof of Lemma 3. Follows immediately from Theorem 2.8 in Straumann and Mikosch

(2006) by noting that our conditions (i) and (ii) imply conditions S.1 and S.2 in their

theorem.

Proof of Theorem 1. We follow Blasques et al. (2014a) and appeal to Theorem

3.13 of White (1994), and obtain θ̂T (f1)
a.s.→ θ0 from the uniform convergence of the

criterion function and the identifiable uniqueness of the maximizer θ0 ∈ Θ defined

e.g. in White (1994).

Existence: Note that LT (θ, f1) is a.s. continuous in θ ∈ Θ if each likelihood

contribution is. This is obtained by the smoothness of the scaled score st : F×Y×Θ →

R and the resulting continuity of ft in θ as a composition of t continuous maps. Due

to the compactness of Θ, by Weierstraß theorem the argmax set of the likelihood is

non-empty a.s. and hence θ̂T exists.

Uniform convergence: By an application of the triangle inequality we have

sup
θ∈Θ

|LT (θ, f1)− L∞(θ)| ≤ sup
θ∈Θ

|LT (θ, f1)− LT (θ)|+ sup
θ∈Θ

|LT (θ)− L∞(θ)|.

The first term in (2.21) vanishes by the convergence of ft(y
1:t−1, θ, f1) to ft(y

t−1, θ)

which is established in Lemma 3. The maintained smoothness assumption on the

scaled score ensures that ℓt(·, f1) = ℓ(ft(y
1:t−1, ·, f1), yt, ·) is continuous in (ft(y

1:t−1, ·, f1), yt).

There thus exists a unique SE sequence {ft(y1:t−1, ·)}t∈Z satisfying supθ∈Θ |ft(y1:t−1, θ, f1)−

ft(y
t−1, θ)| e.a.s.→ 0 ∀f1 ∈ F . It thus follows that supθ∈Θ |LT (θ, f1) − LT (θ)| a.s.→ 0 as
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t→ ∞ by application of the continuous mapping theorem (see also Theorem 2.3[i] in

Van der Vaart (2000)) for ℓ : C(Θ,F)× Y ×Θ → R.

The second term in (2.21) vanishes by an application of the ergodic theorem

(Theorem 2.7 in Straumann and Mikosch (2006)) to the sequence {LT (·)} with el-

ements taking values in C(Θ), so that supθ∈Θ |LT (θ) − L∞(θ)| a.s.→ 0 as T → ∞.

This is obtained under the moment assumption E supθ∈Θ |ℓt(θ)| < ∞, by the SE na-

ture of the sequence {ℓt}t∈Z, which is implied by continuity of ℓ on the SE sequence

{(ft(yt−1, ·), yt)}t∈Z, which is SE using Lemmas 1 and 3 and Proposition 4.3 in Krengel

(1985).

Identifiable uniqueness: Identifiable uniqueness of θ0 ∈ Θ; i.e. supθ:‖θ−θ0‖>ǫ ℓ∞(θ) <

ℓ∞(θ0) for all ǫ > 0, follows by the assumed uniqueness of θ0, the compactness of the

parameter space Θ, and the continuity of Eℓt(θ) in θ ∈ Θ, which is implied by the

continuity of LT in θ ∈ Θ and the uniform convergence of the objective function

proved above; see e.g. White (1994).

Proof of Theorem 2. We make use of the asymptotic normality conditions found

e.g. in Theorem 6.4 of White (1994)). These conditions are: (i) the strong consistency

of θ̂T
a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice continuous differentiability of LT (θ, f1) in

θ ∈ Θ; (iii) the asymptotic normality of the score

√
T ℓ̇t
(
θ0,f

(0:1)
1 )

d→ N(0,J (θ0)
)
, J (θ0) = E

(
ℓ̇t
(
θ0)ℓ̇t

(
θ0)

⊤), (2.21)
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where {f (i)
t (θ;f

(0:i)
1 )} denotes the i-th derivative process and f

(0:i)
1 denotes the initial

conditions for the first i derivative processes, while {f (i)
t (θ)} denotes its asymptotic

SE counterpart. (iv) the uniform convergence of the second derivative of the likelihood

function

sup
θ∈Θ

∥∥L̈T (θ,f (0:2)
1 )− L̈∞(θ)

∥∥ a.s.→ 0; (2.22)

and (v) the non-singularity of L̈∞(θ) = EL̈T (θ) = I(θ).

Weak Convergence of the Score: The score sequence {ℓ̇t(θ, f1)} depends not only

on the data {yt} and the initialized process {ft(θ, f1)} but also on the derivative

processes {ḟt(θ, f1)} ≡ {∂ft(θ, f1)/∂θ}. As such, the limit SE nature of the score

and its smoothness properties imply that ℓ̇t(θ, f1) = ℓ̇
(
yt, ft(θ, f1), ḟt(θ, ḟ1)

)
is a

continuous function of the limit SE process
(
yt, ft(θ, f1), ḟt(θ, ḟ1)

)
and thus SE by

Theorem 36.4 in Billingsley (1995). Note that the data {yt} is SE under the conditions

of Lemma 1, and the process {ft(θ, f1)} and its derivative {ḟt(θ, ḟ1)} both converge

e.a.s. to an SE limit under the conditions of Lemma 3 since it is easy to show that the

contraction condition in (ii) of Lemma 3 for {ft(θ, f1)} is also the relevant contraction

condition for any derivative process {f (i)
t (θ, f

(i)
1 )} of any order; see Blasques et al.

(2014a).

The remainder of the proof now follows along similar lines as in Blasques et al.

(2014a, Theorem 4). As a continuous function of the SE process {yt, ft(θ), ḟt(θ)}, the

score sequence {ℓ̇t(θ)} is also SE and we can apply the CLT for SE martingales in
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Billingsley (1961) to obtain

√
T L̇T

(
θ0)

d→ N(0,J (θ0)
)

as T → ∞. (2.23)

As a result we can also conclude by Theorem 18.10[iv] in Van der Vaart (2000) that

√
T L̇T

(
θ0,f

(0:1)
1 )

d→ N(0,J (θ0)
)

as T → ∞,

if we show that

‖L̇T
(
θ0,f

(0:1)
1 )− L̇T

(
θ0)‖ e.a.s.→ 0 as T → ∞, (2.24)

since the exponential rate in (2.24) implies that
√
T‖L̇T

(
θ0,f

(0:1)
1 )− L̇T

(
θ0)‖ a.s.→ 0 as

T → ∞.

To establish the e.a.s. convergence in (2.24), we use the e.a.s. convergence |ft(y1:t−1, θ0, f1)−

ft(y
t−1, θ0)| e.a.s.→ 0 and ‖f (1)

t (y1:t−1, θ0,f
(0:1)
1 )−f

(1)
t (y1:t−1, θ0)‖ e.a.s.→ 0, as implied by the

conditions of Lemma 3. From the differentiability of ℓ̇t(θ,f
(0:1)
1 ) = ℓ̇

(
θ, y1:t,f

(0:1)
t (y1:t−1, θ,f

(0:1)
1 )

)

in f
(0:1)
t (y1:t−1, θ,f

(0:1)
1 ) and the convexity of F , we use the mean-value theorem to

obtain

‖L̇T
(
θ0,f

(0:1)
1 )− L̇T

(
θ0)‖ ≤

1+nθ∑

j=1

∣∣∣∂ℓ̇(y
1:T , f̂

(0:1)

T )

∂fj

∣∣∣ ·
∣∣f (0:1)

j,T (y1:T−1, θ0,f
(0:1)
1 )− f

(0:1)
j,t (y1:T−1, θ0)

∣∣

=

1+nθ∑

i=1

Op(1)oe.a.s(1) = oe.a.s.(1),
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where nθ = dim(Θ) denotes the dimension of the static parameter vector θ and

f
(0:1)
j,t denotes the j-th element of f

(0:1)
t , and f̂

(0:1)
is on the segment connecting

f
(0:1)
j,t (y1:t−1, θ0,f

(0:1)
1 ) and f

(0:1)
j,t Note that f

(0:1)
t ∈ R

1+nθ because it contains ft ∈ R

as well as f
(1)
t ∈ R

nθ . Finally, the last equality follows from the assumed finite

moments of the likelihood derivatives and the e.a.s. convergence of the initialized

process (see also (Van der Vaart, 2000, p.12)).

Uniform convergence of second derivatives: We use the triangle inequality to write

sup
θ∈Θ

‖L̈T (θ, f1)− L̈∞(θ)‖ ≤ sup
θ∈Θ

‖L̈T (θ, f1)− L̈T (θ)‖+ sup
θ∈Θ

‖L̈T (θ)− L̈∞(θ)‖. (2.25)

The first term vanishes a.s. with T → ∞ by application of a continuous mapping

theorem because the maintained smoothness assumptions ensure that L̈T (·, f1) is

continuous in its arguments {(yt,f (0:2)
t (y1:t−1, ·,f 0:2))} and the invertibility conditions

of Lemma 3 guarantee that there exists a unique SE sequence {f (0:2)
t (yt−1, ·)}t∈Z such

that supθ∈Θ
∥∥
(
yT ,f

(0:2)
T (y1:T−1, θ,f 0:2)

)
−
(
yT ,f

(0:2)
T (y1:T−1, θ)

)∥∥ a.s.→ 0. The second

term in (2.25) converges under a uniform law of large numbers by the maintained

assumption that E supθ∈Θ ‖ℓ̈t(θ)‖ <∞ and the SE nature of {ℓ̈t}t∈Z.

Finally, the non-singularity of the limit L̈∞(θ) = Eℓ̈t(θ) = I(θ) in (v) is implied

by the uniqueness of θ0 as a maximizer of L̈∞(θ) in Θ.
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2.B Student’s t updating recursion driven

by i.i.d. noise

We consider the general model yt ∼ p(yt), yt = h(ft)ut, h(ft) ∈ R
n,n and ut ∼ p(ut)

i.i.d., which implies the relationship p(yt) = |h(ft)|−1p(h(ft)
−1ut). We are able to

model the time-variation in dependence by parameterizing Lt in terms the dynamic

factors ρ(ft).

The most general distributional form we consider is the multivariate Student’s t

distribution, the density of which defined by

p(yt|ν,Σt) =
Γ [(ν + k)/2]

Γ(ν/2)[(ν − 2)π]k/2 |Σt|1/2
[
1 +

1

ν − 2
y′
tΣt

−1yt

]−(ν+k)/2

, (2.26)

which has the additional closure property of yt and ut being in the same class of

distributions. This definition of the t-density implies E[yt] = 0 and Var[yt] = Σt, i.e.

the shape parameter ν affects only the tail thickness without having a direct influence

on the variance.

We consider a multivariate Student’s t density in equation (2.26). Theorem 1 in

Creal et al. (2011) gives the following expression for the information matrix,

Iρ,t =
1

(ν + 4)(1− ρ2t )
2

(
(ν + 2)(1 + ρ2t )− 2ρ2t

)
, (2.27)
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and the score

∇ρ,t =
1

(1− ρ2t )
2

1

ν − 2 + ǫ2t + η2t

{
ν
(
(1 + ρ2t )(y1ty2t − ρt)− ρt(y

2
1t + y22t − 2)

)
+

(1 + ρ2t )
(
2y1ty2t − ρt(ǫ

2
t + η2t − 2)

)
− 2ρt

(
y21t + y21t − (ǫ2t + η2t − 2)

)}
. (2.28)

Next we write the score entirely in terms of the independent noise ut = (ǫt, ηt)
⊤

such that E[utu
⊤
t ] = In. However this decomposition is not unique. Two prominent

choices are:

1. Cholesky root, obtained by setting ψ(ρ) = arcsin(ρ) in equation (12) of the

paper:

h(ft;λ) =




1 0

ρ(ft;λ)
√
1− ρ(ft;λ)2


 ,

∇ρ,t =
1

1− ρ2t

1

ν − 2 + ǫ2t + η2t

{
ν
[√

1− ρ2t ǫtηt − ρt(η
2
t − 1)

]
+

2

[√
1− ρ2t ǫtηt + ρt

(
1

2
(ǫ2t − η2t )− 1

)]}
.

2. Symmetric root, obtained by setting ψ(ρ) = 1/2 arcsin(ρ) in equation (12) of

the paper:
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h(ft;λ) =




1
2
(
√

1 + ρ(ft;λ) +
√
1− ρ(ft;λ)) 1

2
(
√

1 + ρ(ft;λ)−
√
1− ρ(ft;λ))

1
2
(
√
1 + ρ(ft;λ)−

√
1− ρ(ft;λ)) 1

2
(
√
1 + ρ(ft;λ) +

√
1− ρ(ft;λ))


 ,

∇ρ,t =
1

1− ρ2t

1

ν − 2 + ǫ2t + η2t

{
ν

[
ǫtηt −

1

2
ρt(ǫ

2
t + η2t − 2)

]
+ 2 [ǫtηt − ρt]

}
.

Notice from the above how the limiting case ν → ∞ reduces to updating corre-

sponding to the normal distribution.

Appropriate scalings and transformations of the above then yield closed-form ex-

pressions for the updating equation. Also note that reparametrizing the correlation

parameter by the Fisher transformation ρt = tanh(ft), result in multiplying the score

by a factor (1 − ρ2t ), and thus the information matrix by a factor (1 − ρ2t )
2 by an

application of the chain rule.
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2.C Further numerical results

Figure 2.4 plots the SE regions for the Student’s t case with different degrees

of freedom. For the symmetric root case (panel (a)), in the relevant first quadrant

lower degrees of freedom result in larger regions. The opposite holds for the Cholesky

decomposition; see panel (b).

Figure 2.5 plots the results for ψ(ρ) = kψ arcsin(ρ). The left panel gives the

result for the symmetric matrix root kψ = 1/2. The right panel is for the Cholesky

decomposition, kψ = 1. Each panel presents 5 different regions. The outer region is

based on the numerical evaluation of the original condition (2.8), with the infimum

over ψ replaced by the choice ψ(ρ) = arcsin(ρ)/2. The next region is obtained

a numerical evaluation of (2.8) after applying Jensen’s inequality, interchanging the

expectations and the log operator. The next region follows after applying the triangle

inequality, see the second line of equation (2.12). The final two regions are obtained

after applying the Cauchy-Schwarz, or a second triangle inequality; see equations

(2.12) and (2.13).
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Figure 2.4: Contraction sufficiency regions for different Student’s t degrees of freedom
(DoF) and a = 1/2
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Figure 2.5: Contraction sufficiency regions for the normal distribution using unit
scaling (S(ft;λ) ≡ 1) and the stricter inequalities in equation (2.12).
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2.D Complementary results to the empir-

ical application

2.D.1 FTSE: Diagnostic checks on the univariate

models in the GJR family

First, we use the GJR family

σ2(t) = c+ g1σ
2(t− 1) + . . .+ gPσ

2(t− P ) + a1y(t− 1)2 + . . .+ aQy(t−Q)2

+ L1 1[y(t− 1) < 0]y(t− 1)2 + . . .+ LQ 1[y(t−Q) < 0]y(t− q)2

The GJR(1,2) specification is preferred as it gives the log-likelihood of −5121.31 as

opposed to −5127 of the GJR(1,1) model and −5129 of the EGARCH(1,2) model.

Adding more lags is neither significant, nor do the diagnostics change.

Table 2.2: GJR(1,2) Conditional Variance Model for FTSE 100 Index

Parameter Value Standard Error t- Statistic

Constant 0.0372 0.0089 4.1844
GARCH1 0.8741 0.0129 67.4199
ARCH1 0.0022 0.0132 0.1698
ARCH2 0.0755 0.0188 4.0119
Leverage1 0.0816 0.0189 4.3201
DoF 7.1869 0.9560 7.5173
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Table 2.3: Results of Ljung-Box Test for Remaining ARCH effects (H0:none)

lags Result p-Value Statistic Crit Val
Hypothesis

10 0 0.7749 6.4643 18.3070
15 0 0.8144 10.0840 24.9958
20 0 0.8900 12.6963 31.4104
25 0 0.8866 16.8668 37.6525
30 0 0.7492 24.4944 43.7730

Table 2.4: Results of Engle’s Test for Remaining ARCH effects (H0:none)

lags Result p-Value Statistic Crit Val
Hypothesis

10 0 0.7826 6.3780 18.3070
15 0 0.8018 10.2799 24.9958
20 0 0.8865 12.7830 31.4104
25 0 0.8919 16.7129 37.6525
30 0 0.7266 24.9676 43.7730

2.D.2 Athex Composite Index: Diagnostic checks

on the univariate models in the EGARCH

family

Here the EGARCH family

log[σ2(t)] = c+ g1 log[σ
2(t− 1)] + . . .+ gP log[σ2(t− P )]

+ a1(|y(t− 1)| − E|y(t− 1)|) + aQ(|y(t−Q)| − E|y(t−Q)|)

+ L1y(t− 1) + . . .+ LQy(t−Q)
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is chosen. EGARCH(1,2) is preferred as it gives a log-likelihood of −4041.02 as

opposed to −4046.13 of the EGARCH(1,1) model and −4052.14 of the GJR(1,2)

model. Adding more lags is neither significant, nor do the diagnostics change.

Table 2.5: EGARCH(1,2) Conditional Variance Model for Athex Composite Index

Parameter Value Standard Error t- Statistic

Constant -0.0001 0.0019 -0.0548
GARCH1 0.9824 0.0024 407.9410
ARCH1 -0.0192 0.0413 -0.4649
ARCH2 0.1434 0.0429 3.3374
Leverage1 -0.1304 0.0108 -12.0011
DoF 12.8521 2.8669 4.4828

Table 2.6: Results of Ljung-Box Test for Remaining ARCH effects (H0:none)

lags Result p-Value Statistic Crit Val
Hypothesis

10 0 0.8610 5.4257 18.3070
15 0 0.5087 14.2230 24.9958
20 0 0.5506 18.5588 31.4104
25 1 0.0261 40.4590 37.6525
30 1 0.0399 44.8484 43.7730

2.D.3 Robustness check: Modeling both marginals

by an EGARCH(1,2) model

The results in this section show that specification changes in the volatility equa-

tions leave our results for correlation models practically unaltered. We model both

series by an EGARCH(1,2). We omit the robustness check of modeling both series by
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Table 2.7: Results of Engle’s Test for Remaining ARCH effects (H0:none)

lags Result p-Value Statistic Crit Val
Hypothesis

10 0 0.8653 5.3680 18.3070
15 0 0.5097 14.2092 24.9958
20 0 0.5547 18.4975 31.4104
25 1 0.0390 38.7546 37.6525
30 0 0.0546 43.3479 43.7730

as for the Athex Composite Index, as the GJR binding positivity result in an inferior

model fit (a likelihood decrease of more than 10 points).
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Table 2.8: Both EGARCH(1,2) marginals. Full Estimation Results.

Notes: Heteroskedasticity and autocorrelation consistent (HAC) standard errors in parentheses. Best log-likelihood, AIC, and BIC values
across models are printed in boldface. H5%

0 : ρt ≡ 0 and H5%
0 : ρt ≡ ρ̄ indicate whether the Nyblom test among residuals rejects constant

zero or estimated correlation, respectively. HAC standard errors are computed using Newey-West weights with min(⌊1.2× T 1/3⌋, T ) lags.

EWMA1 EWMA2 EWMA3 t(∞)GAS t(∞)GAS t(∞)GAS t(5)GAS t(5)GAS t(5)GAS t(·)GAS
(a=0) (a=0.5) (a=1) (a=0) (a=0.5) (a=1) (a=1)

λ 5 5 8.6648 ∞ ∞ ∞ 5 5 5 8.9598
(0.00742) (0.8788)

c 0.0002 0.0010 0.0115 0.0112 0.0109 0.0089 0.0089 0.0088 0.0112
(0.0003) (0.0003) (0.0448) (0.0451) (0.0358) (0.0111) (0.0113) (0.0067) (0.0071)

A 0.0254 0.0281 0.0310 0.0334 0.0315 0.0296 0.0356
(0.0481) (0.0472) (0.0416) (0.0172) (0.0144) (0.0089) (0.0100)

B 0.9771 0.9769 0.9761 0.9757 0.9763 0.9770 0.9798 0.9799 0.9801 0.9766
(0.0069) (0.0048) (0.0019) (0.1098) (0.0914) (0.0723) (0.0237) (0.0240) (0.0142) (0.0141)

Log-likelihood In-sample −7845 −7844 −7812 −7886 −7886 −7886 −7838 −7838 −7838 −7803
AIC 15691 15692 15629 15779 15779 15778 15682 15682 15682 15615
BIC 15697 15704 15647 15797 15797 15796 15700 15700 15700 15639
# estimated parameters 1 2 3 3 3 3 3 3 3 4

H5%
0 : ρt ≡ 0 reject reject

H5%
0 : ρt ≡ ρ̄ reject reject reject reject reject reject reject reject

Inside SE region?
kψ = 1 (Cholesky) Yes Yes No No No No No
kψ = 1/2 (Symmetric) Yes Yes Yes Yes Yes Yes Yes

Notes: The second line underneath each parameter estimate depicts HAC sandwich standard errors. For volatility, EGARCH(1,2)
marginals are used for both series.
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Chapter 3

High-Dimensional Dynamic

Correlation Models: Formulations,

Properties and Estimation

Abstract. We highlight the similarities and the differences between the updating mechanisms of

the dynamic conditional correlation (DCC) based equicorrelation model of Engle and Kelly (2012)

and the recent score-based dynamic correlation models of Creal, Koopman, and Lucas (2011, 2013).

For score driven models, we provide new theoretical properties by establishing conditions for station-

arity and ergodicity of the model and conditions for consistency of the quasi maximum likelihood

estimator. In an empirical application, we propose a joint model for both equity returns and options

data to measure time-varying correlation risk premia.
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3.1 Introduction

The estimation of dynamic dependence measures for asset returns, interest rates

and credit spreads is an important research topic in financial econometrics and risk

management. A particular challenge in multivariate dependence modeling is the rapid

increase in the number of both dynamic and static model parameters if the dimension

of the data increases. This has led many researchers to propose models that combine

parsimony with a sufficient degree of flexibility to accommodate multivariate volatility

and correlation dynamics; see for example Bauwens, Laurent, and Rombouts (2006)

for an overview.

One of the most striking findings in the recent literature is that it is often hard

for models with a complex dynamic correlation structure to beat models with an ex-

tremely simple correlation structure, particularly in high-dimensional settings. This

holds even more if one accounts for the potential effect of estimation uncertainty.

A key reference in this respect is the dynamic equicorrelation (DECO) model of

Engle and Kelly (2012). They use an extremely simple correlation matrix struc-

ture defined by one (or at most a few) dynamic parameters and show that such a

model does well in forecasting and assessing portfolio risk dynamics. Engle and Kelly

show in a controlled simulation setting that their equicorrelation model outperforms

a correctly specified but estimated dynamic conditional correlation (DCC) model

of Engle (2002a). These findings are in line with results from the finance litera-

ture showing that simple asset allocation strategies that spread out wealth evenly
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across all available assets (and thus implicitly assume an equicorrelation structure)

have a strong out-of-sample performance. The strong performance of these naive

asset allocation strategies is often superior to that of optimal mean-variance portfo-

lios where all means, variances, and covariances are estimated simultaneously; see

DeMiguel, Garlappi, and Uppal (2009) and Vasnev, Claeskens, Magnus, and Wang

(2014).

Recently, alternative versions of the equicorrelation model have been proposed in

the literature. Apart from the original formulation by Engle and Kelly (2012) that

uses the dynamic conditional correlation (DCC) dynamics of Engle (2002b), a number

of robust, score-based models for dynamic correlations and copulas have been pro-

posed. Examples include Creal, Koopman, and Lucas (2011, 2013), Harvey (2013),

Oh and Patton (2013), Lucas et al. (2013, 2014), De Lira Salvatierra and Patton (2013),

Bernardi and Catania (2015), and Avdulaj and Barunik (2015). So far, however, lit-

tle attention has been paid to how these different equicorrelation models are related.

For example, it is not clear how different specifications exploit and combine the in-

formation in the data differently, and how these different ways can be more or less

efficient in specific settings. Second, little is known about the statistical theory of

the new score-driven (equi)correlation models. In particular, we do not know under

what conditions score-driven equicorrelation models are stationary and ergodic. This

is the main theoretical contribution of the current paper.

First, we show that score-driven equicorrelation models and the DCC equicorre-
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lation model handle the contemporary and dynamic effects of influential observations

in a different way. To make a consistent comparison of filtered correlation paths (in

the sense of Patton, 2011), we use a quasi maximum likelihood (QML) framework to

estimate the models’ static parameters. Such an approach is new to the generalized

autoregressive score (GAS) literature, which so far mainly focuses on full maximum

likelihood (ML) estimation. The advantage of QML over ML is that we mitigate

part of the sensitivity of ML when using a possibly misspecified likelihood, while at

the same time retaining a number of the attractive robustness features of fat-tailed

score-driven volatility models; see the discussions in Boudt et al. (2011), Creal et al.

(2011, 2013) and Harvey (2013).

The second contribution of the current paper is to characterize the stochastic

properties of score-driven correlation models. We formulate new conditions for sta-

tionarity and ergodicity that substantially simplify and improve upon the results in

Blasques et al. (2016). Furthermore, the new results are not only applicable to corre-

lation models, but more generally to multivariate scale models. Dynamic multivariate

models necessarily introduce non-linearities into the specification that are challenging

for establishing stationarity and ergodicity. For example, only recently a sufficient

condition for strict stationarity has been given by an analysis of algebraic geometry

for general BEKK processes; see Boussama et al. (2011). However, as we will argue,

a surprisingly simple pattern emerges in a subclass of score-driven correlation models,

where the nonlinearity enforces stability.
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To illustrate the usefulness of our results, we apply the equicorrelation model to a

U.S. data set of stock returns and option implied correlations. We use the equicorre-

lation model to estimate the dynamic correlation structure of U.S. stock returns. In

this setting, QML estimation is advantageous as it is economically interpretable, while

the implications of a full density fit for a possibly severely mis-specified model may

be questionable. Furthermore, a QML based estimation procedure of the score-driven

model is numerically efficient in such high-dimensional settings, as for the Gaussian

observation density the estimation problem can be split into two separate stages: in

a first step volatilities are estimated and in a second step one applies the estimated

volatilities to extract dynamic correlations. We combine the dynamic equicorrela-

tion model with two option implied correlation measures obtained from the CBOE

into a new joint model. This allows us to investigate whether correlations bear a

time-varying risk premium. The importance of (static) correlation risk premia is

well-known from the empirical finance literature; see for instance Pollet and Wilson

(2010). Using data over the period 2002–2013, we find that the risk premia are much

more persistent than the equity induced correlation measures. This difference in per-

sistence can help to explain why risk-neutral correlations have been found to be bad

predictors of their physical counterparts, in contrast to the results for risk-neutral

volatilities.

The remainder of this paper is organized as follows. Section 3.2 introduces the

generalized autoregressive score equicorrelation model and discusses its relation to
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the dynamics embedded in the DCC equicorrelation model of Engle and Kelly (2012).

Section 3.3 derives the asymptotic statistical properties of the QMLE for score-driven

equicorrelation models. Section 3.5 presents our empirical application using equity

return data and option implied correlations. Section 3.6 concludes. The Appendix

gathers the proofs.

3.2 Dynamic equicorrelation models

3.2.1 The model and its quasi-likelihood function

Consider the equicorrelation model

yt =
√
ρt ιn gt +

√
1− ρt εt, εt

i.i.d.∼ (0, In) , (3.1)

where yt = (y1t, . . . , ynt)
⊤ ∈ R

n for t = 1, . . . , T , denotes the vector of observations,

the correlation parameter ρt with values in (−(n − 1)−1, 1) determines the relative

magnitude of the i.i.d. common factor gt with zero mean and unit variance, and the

idiosyncratic components εt = (ε1t, . . . , εnt)
⊤. We assume gt and εt are independent.

It follows that the covariance matrix of yt is given by

Σt = ρtιnι
⊤
n + (1− ρt)In.
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If yt has an elliptical distribution, computing the likelihood function only requires the

computation of the log determinant and the inverse of Σt. These two quantities are

given analytically by the expressions

Σ−1
t =

1

1− ρt
In −

ρt
(1− ρt) (1 + (n− 1)ρt)

ιnι
⊤
n , (3.2)

det(Σt) = (1− ρt)
n−1 (1 + (n− 1)ρt) . (3.3)

Note that all elements of yt in our specification have unit variance. We specify

the model as such to fully concentrate on the correlation dynamics. The covariance

matrix Σt in our setting can thus be viewed as a correlation matrix, and we indicate

this from now on by writing

Σt = RDECO (ρt) =




1 ρt . . . ρt

ρt
. . . . . .

...

...
. . . . . . ρt

ρt . . . ρt 1




= ρtιnι
⊤
n +

(
1− ρt

)
In. (3.4)

If variances are also stochastic, we can easily transform the model to measure ỹt =

D−1
t yt, with a diagonal matrix Dt containing the volatilities of yit for i = 1, . . . , n and

t = 1, . . . , T .

In this paper, we follow Engle (2002a) and adopt a Gaussian quasi-likelihood for

yt to estimate the model’s parameters. Using the Gaussian quasi-likelihood as our
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criterion function, it is well-known that we can separate the estimation of volatilities

and correlations into two steps. This is a desirable feature in high-dimensional systems

such as ours due to the computational gains involved. Moreover, estimation of the

model’s static parameters is still consistent, even if the Gaussian quasi-likelihood is

mis-specifcied. Using equations (3.2) and (3.3), the Gaussian quasi-likelihood can be

written as LT =
∑T

t=1 ℓt, with,

ℓt = −1

2

(
log
(
(1− ρt)

n−1(1 + (n− 1)ρt)
)
+

y⊤t yt
1− ρt

− ρt ·
(
ι⊤yt

)2

(1− ρt)(1 + (n− 1)ρt)

)
.

(3.5)

The quasi-maximum likelihood (QML) criterion function only depend on the quan-

tities ι⊤yt and y⊤t yt, which hold the sum and sum of squares of the elements in yt,

respectively. Therefore, these are the two sufficient statistics of the model.1 With

these two statistics and the value of ρt, the QML criterion can be computed very

efficiently, even in high-dimensional settings. The efficiency of the entire estimation

procedure then hinges on the dynamic model for the correlation parameter ρt.

1Recall that a statistic T (y) is sufficient for the parameter f if the conditional distribution of
y given T (y) does not depend on f . By the Fisher- Neyman factorization theorem, we can then
equivalently rewrite the likelihood as

py
(
y|f
)
= h(y) gθ(T (y)|f)

see also (3.5) for our concrete equicorrelation example.
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3.2.2 DCC-DECO dynamics

Engle and Kelly (2012) specify a dynamic model for ρt based on the Dynamic

Conditional Correlation (DCC) approach2 of Engle (2002a) and Aielli (2013). We

indicate this by writing ρt = ρDCC
t . We have

Qt+1 = (1− α− β)Q̄+ βQt + αQ̃
1/2
t yty

⊤
t Q̃

1/2
t , (3.6)

RDCC
t = Q̃

−1/2
t QtQ̃

−1/2
t , ρDCC

t =
1

n(n− 1)
ι⊤
(
RDCC
t − In

)
ι, (3.7)

where α, β > 0 are scalars, Q̃ replaces the off-diagonal elements of Q with zeros, and

the targeting matrix Q̄ is obtained from the unconditional correlation matrix of the

standardized observations y∗t = Q̃
1/2
t yt; see also Aielli (2013). Note that even though

ρDCC
t is univariate, we still need to keep track of the n× n matrices Qt and R

DCC
t for

all t = 1, . . . , T . Moreover, we need to estimate the entire targeting matrix Q̄. We

come back to both of these issues later.

3.2.3 GAS-DECO dynamics

Recently, a number of papers have proposed alternative updating mechanisms for

the correlation parameters based on the score of the predictive likelihood. These

models are known as generalized autoregressive score (GAS) models; see Creal et al.

(2013) and Harvey (2013). Correlation and copula versions of these models have been

2Even though we use the terms DCC and cDCC interchangeably throughout, we have imple-
mented the cDCC of Aielli (2013) in all computations.
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considered in for example Creal et al. (2011), Boudt et al. (2012), Lucas et al. (2014),

Bernardi and Catania (2015), and De Lira Salvatierra and Patton (2013).

Consider the multivariate scale model

yt = h(ft) ut, ut
i.i.d.∼ (0, In) , t ∈ N (3.8)

ft+1 = ω + β ft + α s
(
ft, yt;λ

)
, (3.9)

st := s
(
ft, yt;λ

)
= S

(
ft;λ

)
· ∇
(
ft, yt;λ

)
(3.10)

∇t := ∇
(
ft, yt;λ

)
= ∂ log py

(
yt|f ;λ

)
/∂f

∣∣
f=ft

, (3.11)

initialized at some fixed initial value f1 ∈ R, where h(ft) is a scale matrix; ut has a

density function pu(ut;λ) with zero mean, unit covariance matrix In, and depending on

the parameter vector λ, such as the degrees of freedom parameter if pu is a Student’s

t density; ω, α and β are elements of the static parameter vector θ ∈ Θ; h : R
k →

R
n×n maps the time-varying parameter vector ft to the positive definite matrix h(ft);

S(ft;λ) ∈ R
k×k is a scaling matrix for the score ∇(ft, yt;λ) function of the conditional

density py(yt|ft;λ) of the observations (3.8).3 It is clear that (3.8) encompasses (3.1)

by defining h(ft) such that h(ft)h(ft)
⊤ = Σt. Note that the distribution pu of ut

3The model in (3.8) covers a large number of time-varying volatility and correlation models by an
appropriate choice for the dynamics of ft. Examples include the BEKK model of Engle and Kroner
(1995a), the CCC model of Bollerslev (1990), the DCC model of Engle (2002a) and its modification
by Aielli (2013), the OGARCH model of Ding (1994), the GOGARCH model of Van der Weide
(2002); see also Bauwens et al. (2006) for an overview. Moreover, (3.8) also contains the recent
score-driven multivariate volatility and correlation models of Creal et al. (2011) and Lucas et al.
(2014), and the univariate Beta-t-GARCH model of Harvey and Chakravarty (2008) and Harvey
(2013), which are all special cases of the Generalized Autoregressive Score modeling framework of
Creal et al. (2013).
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may depend on the parameter λ, for example the degrees of freedom parameter of a

Student’s t distribution.

The following two examples illustrate the properties of score-driven correlation

models in two familiar cases and prelude to the comparative analysis with the DCC

equicorrelation model of Engle and Kelly (2012) in Section 3.2.4.

Example 1 (Bivariate Gaussian). For a bivariate normal distribution with unit vari-

ances and link function ρt = tanh(ft), the (unscaled) score s(ρt, yt;λ) of the normal

distribution with respect to ρt is given by

s(ρt, yt;λ) =
1

1− ρ2t
·
[
(1 + ρ2t )(y1ty2t − ρt)− ρt(y

2
1t + y22t − 2)

]
(3.12)

=
1

1− ρ2t
·
[
1

2
(1 + ρ2t )(y1t + y2t)

2 − 1

2
(1 + ρt)

2(y21t + y22t) + ρt(1− ρ2t )
]

(3.13)

=
1

1− ρ2t
·
[
(1− ρt)

2(y1ty2t − ρt)− ρt(y1t − y2t)
2 + 2ρt(1− ρt)

]
. (3.14)

This score has a clear interpretation. The form in equation (3.12) reveals that the

score is a martingale difference: it has zero conditional mean if the model is well-

specified as E[y1ty2t] = ρt and E[y21t + y22t] = 2. We exploit this feature later on to

establish stationarity and ergodicity properties of the correlation process ft in (3.9).

The specification in equation (3.13) is also interesting in that it shows that the score

is essentially formulated in terms of two sufficient statistics, namely (y1t + y2t), and

(y21t+y
2
2t). This feature can be extended more generally to the equicorrelation model.
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We can exploit this feature to operationalize the model in high-dimensional settings.

Note that these are precisely the same two sufficient statistics as needed to evaluate

the QML criterion (3.5). Finally, the formulation in (3.14) allows us to relate the

score-driven approach to alternative models for time varying correlations. As we show

later, the first term (y1ty2t − ρt) in (3.14) is similar to the DCC updating scheme of

Engle (2002a). The second term on the other hand, (y1t−y2t)2, captures the differences

between observations and thus between their order statistics. As such, it resembles

the specification of Patton (2006b) for general copulas with time varying parameters.

The approach based on the score combines these two sources of information. When

the correlation increases, deviations in expected tail dependence (y1t − y2t)
2 become

more dominant in the updating recursion. We provide more details on the comparison

between the score-driven and DCC approach in Section 3.2.4.

We also note that we can write the score in (3.14) in terms of two independent

standard normal random variables u1t and u2t by defining y1t = u1t and y2t = ρtu1t+

√
1− ρ2t u2t. We obtain

su(ρt, ut;λ) = s(ρt, R
DECO(ρt)

1/2ut;λ) =
√

1− ρ2t u1tu2t − ρt(u
2
2t − 1). (3.15)

The above expression illustrates that the trade-off between concordance (u1tu2t) and

magnitude of independent innovation pairs (u22t − 1) takes place on the unit circle

with weights (1 − ρ2t )
1/2 and ρt, respectively. We make extensive use of this feature
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of bounded weights in developing the more general statistical theory for the equicor-

relation model later on.

Example 2 (Bivariate Student’s t). For fat-tailed densities, the GAS framework

suggests a robust filter for variances and correlations. Take ft = ρt and let s(ρt, yt;λ)

be the score of a bivariate Student’s t distribution with unit variances and correlation

parameter ρt. After some algebraic manipulations it follows directly from Creal et al.

(2011) that

s(ρt, yt;λ) =
1

1− ρ2t
·
[
1

2
wt(1 + ρ2t )(y1t + y2t)

2 − 1

2
wt(1 + ρt)

2(y21t + y22t) + ρt(1− ρ2t )
]
,

(3.16)

wt =
(
λ+ n

)/(
λ− 2 +

y21t − 2ρty1ty2t + y22t
1− ρ2t

)
,

where λ > 2 denotes the degrees of freedom parameter of the Student’s t distribu-

tion with unit variance. The weight wt decreases if yt lies more in the tails of the

distribution, such that tail observations have a smaller impact on volatilities and cor-

relations compared to the Gaussian case. This provides the robustness features to

the score-driven Student’s t based correlation model, as mentioned earlier. We note

again that the score can be formulated in terms of the two sufficient statistics (ι⊤yt)
2

and y⊤t yt, a feature that extends to the entire class of multivariate scale models for

with an equicorrelation structure and elliptically distributed ut; see Section 3.3.

The specification in (3.9) only has one lag of s(ft, yt;λ) and ft. It is straight-
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forward, however, to include more lags, non-linearities, or even long-memory fea-

tures into (3.9); see for example Creal et al. (2013), Harvey and Luati (2014), and

Janus et al. (2014). The use of the transformed Cholesky decomposition h(ft) in

equation (3.8) moreover allows us to reparametrize the model such that the corre-

lation ρt automatically lies in the correct range. For example, in the bivariate case,

we can use the transformation ρt = tanh(ft), such that −1 < ρt < 1 for any value

of ft ∈ R; see also Van der Vaart (2000, Example 3.6, p. 30). Choosing an appro-

priate transformation in the multivariate context can be a non-trivial issue; see also

Laurent et al. (2009). In our general n-dimensional equicorrelation setting, we use

the adjusted tanh parameterization

ρGAS
t = ρ(ft) = tanh∗

n(ft) =
1

2

(
1− 1

n− 1

)
+ 1

2

(
1 +

1

n− 1

)
tanh(ft), (3.17)

which forces ρt(ft) ∈ (−1/(n − 1), 1) for every ft ∈ R and every dimension n.

The score-driven approach automatrically take these reparametrizations into account

for the dynamics of ft. For example, in the bivariate normal example the tanh

reparametrization requires us to postmultiply the original score with respect to ρt in

(3.14) by the derivative ρ̇(ft) = ∂ ρ(f)/∂f |f=ft due to a chain rule argument. In

case of the tanh parametrization, this amounts to multiplying (3.14) by the factor

ρ̇(ft) = (1 − ρ(ft)
2), which cancels the effect of the denominator in (3.14). A clever

reparameterization can thus remove possible degeneracies from the score, such as pos-
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sible division by zero if the correlation tends to 1. The tanh∗
n parameterization in

(3.17) accomplishes the same in a general dimension n. The tanh∗
n-reparametrization

also has the advantage that predetermined regressors can be easily be included, similar

to GARCH-X models. Due to the link function in (3.17), interactions with economic

variables and average market correlations can be studied. This also motivates our

joint model for equity returns and option-implied correlations in Section 3.5.

The GAS dynamics in (3.9) use the scaled score s(ft, yt;λ) at time t to improve the

local fit of the model as measured by the log density log py(yt|ft; θ). The model has

information theoretical optimality properties in that it locally improves the Kullback-

Leibler divergence upon each iteration step, even in cases where the statistical model

is severely mis-specified; see Blasques et al. (2015). The model is observation-driven

as defined by Cox (1981). For the scaling function S(ft;λ) of the score, Creal et al.

(2013) advocate the use of powers of the conditional Fisher information matrix,

S(ft;λ) = I(ft;λ)−a It(ft;λ) = Et−1

[
∇t(ft, yt;λ)∇t(ft, yt;λ)

⊤] , (3.18)

where a is typically taken as 0, 1/2 or 1. This accounts for the local expected curvature

of the likelihood.

The following general result will prove useful.

Proposition 1. The score expressions for the GAS model in equations (3.8)–(3.11)
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satisfies

∇u,t = ∇(ft, h(ft)ut) = Ψ(ft;λ)
⊤ vec

(
−∇pu,λ(ut)u

⊤
t − In

)
, (3.19)

∇t = ∇(ft, yt;λ) = Ψ(ft;λ)
⊤ vec

(
−∇pu,λ

(
h(ft)

−1yt;λ
) (
h(ft)

−1yt
)⊤ − In

)
,

(3.20)

Ψt = Ψ(ft;λ) =
(
In ⊗ h(ft;λ)

−1
)
∂vec(h(ft;λ))/∂f

⊤
t , (3.21)

where ∇pu,λ(ut) = ∇pu,λ(ut;λ) = ∂ log pu(ut;λ)/∂ut does not depend on the time-

varying parameter ft. The information matrix takes the form

It(ft;λ) = E
[
∇(ft, ut;λ)∇(ft, ut;λ)

⊤] = Ψ⊤
t

(
Ipu,λ − vec(In)vec(In)

⊤)Ψt,(3.22)

Ipu,λ = E[utu
⊤
t ⊗∇pu,λ(ut)∇pu,λ(ut)

⊤]. (3.23)

An interesting feature about the score in (3.19) is that the parameterization h(ft;λ)

and the shape of the error density pu enter in a clear and almost separable way. The

error distribution pu enters through the score∇pu,λ(ut), while the choice of parameter-

ization h(ft;λ) enters via the matrix Ψ(ft;λ). Such a property turns out to be useful

for deriving some of the asymptotic properties of yt as generated by (3.8)–(3.11).

Using Proposition 1, we can derive the expressions for the score of the equicorrela-

tion model. If we moreover assume that the innovations ut are elliptically distributed,

the relevant scores take a simple and intuitive form. We summarize this in the fol-
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lowing corollary. In this corollary, we use the generalized tanh parameterization in

(3.17).

Corollary 1. Consider the equicorrelation model with parameterization (3.17) and

with elliptically distributed error terms ut such that ∇pu,λ(ut) = −wu,t ·ut with weights

wu,t := wu(u
⊤
t ut;λ), where wu(·;λ) : R+ → R

+. Define the functions ρj,t := ρj(ρ(ft))

for j = 1, . . . , 6 as in equations (3.49)–(3.54) of the Appendix. Then

∇u(ft, ut;λ) := ρ1,t wu,t · u⊤t ut + ρ2,t wu,t · (u⊤t ι)2 − (ρ1,t + ρ2,t)n, (3.24)

∇(ft, yt;λ) = ρ3,t wy,t · y⊤t yt + ρ4,t wy,t · (y⊤t ι)2 − (ρ1,t + ρ2,t)n, (3.25)

where

wy,t := wy(ft, yt;λ) := wu
(
ρ5,t y

⊤
t yt + ρ6,t (y

⊤
t ι)

2;λ
)
. (3.26)

The weight wy,t in (3.26) accounts for possible fat-tailedness and other features

of the density pu. If pu is Gaussian, we have wy,t ≡ 1, while for example for the

Student’s t case with λ > 2 degrees of freedom and variance 1, we have

wu,t =
λ+ n

λ− 2 + u⊤t ut
, (3.27)

resulting in the weight in (3.16) in Example 2. The Student’s t weight for λ <∞ thus

decreases if ‖ut‖ is large, i.e., if the error lies far in the tails. This gives a robustness
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feature to the dynamics of the GAS specification; see Creal et al. (2011) for more

details.

Equations (3.25) and (3.26) directly reveal that the GAS-DECO model from Sec-

tion 3.2 for elliptical distributions only requires us to keep track of two univariate suf-

ficient statistics, namely y⊤t ι, and y
⊤
t yt. Unlike for example the DCC-DECO model,

we no longer need a recursion in the n × n matrices Qt. Given that the Gaussian

QML criterion in (3.5) depends on the same two univariate sufficient statistics, the

GAS-DECO model retains it numerical efficiency for any elliptical density pu.

3.2.4 Comparison of GAS-DECO and DCC-DECO

dynamics

It is interesting to highlight some of the differences between the original DECO

dynamics of Engle and Kelly (2012) as specified in equations (3.6) and (3.7), and the

dynamics of the score-driven equicorrelation model under fat tails. Using equations

(3.6) and (3.7), we obtain

ρDCC
t+1 =

ι⊤
(
Q̃

−1/2
t+1 Qt+1Q̃

−1/2
t+1 − In

)
ι

n(n− 1)
= (3.28)

ι⊤
[
(1− α− β)

(
q̄t+1 R̄ q̄

⊤
t+1 − In

)
+ β

(
q̃t+1R

DCC
t q̃⊤t+1 − In

)
+ α

(
q̃t+1 yty

⊤
t q̃

⊤
t+1 − In

)]
ι

n(n− 1)
,
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with diagonal matrices q̄t = Q̃
−1/2
t

˜̄Q1/2 and q̃t = Q̃
−1/2
t Q̃

1/2
t−1, and correlation targeting

matrix R̄ = ˜̄Q−1/2Q̄ ˜̄Q−1/2, with equicorrelation target ρ̄ = ι⊤(R̄ − In)ι/(n(n − 1)).

To provide an intuition for the differences between GAS-DECO and DCC-DECO

transition dynamics, we first consider the special case where the diagonal elements of

Q̃t are ‘in equilibrium’, i.e., ˜̄Q = Q̃t = Q̃t−1 and q̄t = q̃t = In. Equation (3.28) then

simplifies to

ρDCC
t+1 = (1− α− β) ρ̄+ β ρDCC

t + α∆DCC
t , ∆DCC

t =
(ι⊤yt)

2 − n

n(n− 1)
. (3.29)

If the DCCmodel is correctly specified, we have the unbiasedness property Et−1[∆
DCC
t ] =

ρDCC
t at the true parameters. The assumed condition for covariance stationarity is

|α + β| < 1.

As can be seen in Example 2, the dynamics of the GAS-DECO correlation pa-

rameter for Student’s t distributed ut take the form

ρGAS
t+1 = ρt+1

(
ω + β ρGAS

t + α∆GAS
t

)
, (3.30)

∆GAS
t =

1

n
wt

[
(y⊤t ι)

2

(
1

1 + (n− 1)ρ
+

ρ

1− ρ

)
− (y⊤t yt)

1 + (n− 1)ρ

1− ρ

]
+ (n− 1)ρ.

If the GAS model is correctly specified, we can make use of Bartlett’s identity such

that Et−1[∆
GAS
t ] = 0 at the true parameters. The relevant condition for covariance

stationarity is |β| < 1; see also Section 3.3.

The updating mechanism in (3.29) is markedly different from that in (3.30). First,
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∆GAS
t exploits more information in the score via the inclusion of the weights wt in

(3.30). Second, ∆GAS
t not only reacts to (ι⊤yt)

2, but also to the sum of squares y⊤t yt =

‖yt‖2. As an example, consider the case of the uncorrelated normal distribution with

wt = 1 and ρ = 0. In this case, ∆GAS
t reduces to

∆GAS
t =

1

n2
ι⊤
[
n yty

⊤
t − y⊤t yt

n
ιι⊤
]
ι =

(ι⊤yt)
2 − n

n
−
(
y⊤t yt
n

− 1

)
. (3.31)

We see that the GAS model penalizes shocks with large ‖yt‖ by imposing a negative

impact of ‖yt‖ on ρt+1. In fact if the elements of yt are correlated and have the same

standard deviation, one expects the individual elements yit to be of similar magnitude,

while pairwise deviations result in a correction of the correlation parameter through

the updating scheme (3.30). Also the DCC-DECO model accounts for the squared

observations y2it, but in a dynamic manner. A larger value for ‖yt‖ relates to (at

least some of) the diagonal entries of Qt+1 to increase. By the transformation from

Qt+1 to R
DCC
t+1 , this typically results in a lower subsequent equicorrelation as well. For

the DCC-DECO there is also the additional effect in the next period, as the larger

diagonal elements of Qt+1 are carried forward via the recursion of Qt. In the end,

the dissipation of the effect of a large ‖yt‖ depends on the entire dynamic pattern of

Q̃
−1/2
t+1 Q̃t, which is complicated to pin down given the dynamics of Qt. Also note that

in higher dimensions, the GAS transition dynamics in (3.30) put more emphasis on

the cross-products (ι⊤yt)
2 − n and less on the magnitude ‖yt‖2.
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Next to the above more subtle differences in the correlation dynamics of the GAS-

DECO and DCC-DECO models, these models also have a number of more apparent

differences. First, due to the univariate modeling of the time-varying correlation

parameter in the GAS model we no longer require a correlation targeting procedure to

facilitate the estimation of the intercept Q̄ in (3.6). The estimation of Q̄ in high cross-

sectional dimensions is not only statistically inefficient, but introduces an incidental

parameter problem that can render the maximum likelihood estimator inconsistent

for the full DCC model; see Engle et al. (2008). In such cases, alternative estimation

methods such as composite maximum likelihood estimation may be considered.

Second, unlinke the full recursion (3.28), the score-based correlation dynamics can

be written in terms of univariate sufficient statistics. This avoids a high-dimensional

n×n recursion in the auxiliary matrices Qt. Pre-computing the sufficient statistics for

the score-based recursion allows us to obtain a highly numerically efficient model and

estimation procedure compared to the already efficient DCC-DECO methodology.

In arbitrarily high dimensions, the estimations and recursions will not outpass the

complexity of a simple univariate GARCH models. By contrast, the original GAS

approach for full correlation matrices as advocated in Creal et al. (2011) requires the

calculation of inverses and multiplications of n2×n2 matrices, which quickly becomes

infeasible for large n.

Third, as the likelihood can be computed only via the univariate sufficient statis-

tics, this implies that we can allow the dimension of observables to vary over time. If
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the time-varying dimensionality is not driven by systematic sample selection issues,

we can accomodate unbalanced panels and randomly missing observations. This is

relevant for instance in our application to S&P 500 stock returns in Section 3.5.4

Finally, the reparameterization h(ft) in the score-driven approach allows us to

easily include exogenous variables into the correlation dynamics, while retaining the

equicorrelation structure and the positive definiteness of the correlation matrix. By

contrast, the DCC-DECO dynamics do not ensure that the lower bound −(n− 1)−1

on the admissible range of equicorrelations is automatically satisfied, particularly not

if also exogenous variables are included. Though in-sample problems for the DCC-

DECO are expected to be small as the QML criterion penalizes violations of the

lower admissible region, out-of-sample forecasts and risk analyses might be much

more problematic. No such difficulties are expected for the GAS-DECO set-up of the

model.

3.3 Statistical Properties of the GAS-DECO

Model

Notation

We summarize the notation for some frequently used operators, which are also applicable

4See also Patton (2006a) for a discussion of copula estimation in overlapping panels.
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for the rest of this thesis. We denote the natural filtration by Ft = σ(Zt), t ∈ Z, where Zt =

{yt, yt−1, . . .} and yt denotes the vector of observables. A⊗B denotes the Kronecker product

of matrices A and B (see Abadir and Magnus (2005)); · denotes matrix multiplication and

log(·) denotes the natural logarithm. vec(A) is the vec-operator stacking the columns of

A and vech(A) does the same for lower diagonal elements of A; D denotes the duplication

matrix such that Dvech(A) = vec(A); A⊤ denotes the transpose of a matrix ; A+ denotes

its Moore-Penrose inverse; ‖A‖ denotes its generic norm, depending on the problem at hand

we often make use of Frobenius norm ‖ ·‖F , which is obtained by vectorizing the columns of

A or the Euclidian norm ‖·‖2, which is defined as the square root of the maximal eigenvalue

of A⊤A. For a random variable A, we define the Lr-norm ‖A‖r = E [‖A‖r]
1
r , where E [·] and

Et [·] = E [ · |Ft] denote the expectation and conditional expectation operators, respectively.

Ai,j denotes the (i, j)-th element of A, Ai,· denotes its i-th row and A·,j denotes its j-th

column. We denote the vector of ones ιn ∈ R
n×1 interchangeably also as ι. Similarly, In

denotes the unit matrix. Finally, the abbreviation “i.i.d.” denotes independently, identically

distributed observations.

3.3.1 Stationarity and ergodicity of the simulated

model

Using Proposition 1, we can rewrite the scaled score as s(ft) = K(ft)mt, with

K(ft) = S(ft)Ψ(ft;λ)
⊤, and mt = vec

(
−∇pu,λ(ut)u

⊤
t − In

)
. Note that mt is a mar-
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tingale difference sequence, which is also required to asymptotic properties of the ML

estimator. Let Ft and Θ denote sets where the time-varying parameter f and the

static parameter θ take values, respectively. We obtain the following result for the

known, correctly specified data generating process.

Proposition 2. If the score of GAS model satisfies

s(ft) = K(ft;λ)mt, (3.32)

with {mt}t∈Z an i.i.d. sequence with zero mean and finite moment E ‖mt‖r < ∞ for

some r > 0; K : F × Λ → R
k×n2

is continuous and satisfies

sup
f∈F

‖K(f ;λ)‖2 ≤ K(λ) <∞, (3.33)

for every λ ∈ Λ. Furthermore, assume that there exists k ∈ N such that the k-step

transition density is strictly positive and continuous, i.e.

P(ft+k ∈ A|ft = f) =

∫

A

µ(y|f)dy and µ(·|f) > 0 for all t ∈ N, all f ∈ F and all A ∈ B(F),

(3.34)

where µ denotes the Lebesgue measure.

Then for all β with modulus less than one and full-rank α, the chain {ft} is

geometrically ergodic and the non-anticipative strictly stationary solution of (3.8)–

(3.9) is geometrically β-mixing. If E‖mtm
⊤
t ‖ <∞, {ft} is also covariance stationary.
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Recall from Example 1 in Section 3.2 that in the bivariate Gaussian correla-

tion model, we have that K(ft;λ) = (
√
1− ρ(ft;λ)2 , ρ(ft;λ)) and mt = m(ut) =

(u1tu2t , 1− u22t)
⊤. The vector K(ft) in this case lies on the unit circle and therefore

always has full rank. Furthermore, condition (3.34) is satisfied in Gaussian models

for single step transitions (k = 1) as the score driven innovations enable unlimited

steps across the state space. In order to establish the condition (3.34) for scores that

introduce bounded innovations, it is necessary to consider several chain transitions

(k > 1) in order to ensure that the Markov chain does not get “stuck” without having

access to all subsets of the entire state space F . For such models, the irreducibility

property needs to be established on a case-by-case basis, either due to further ana-

lytical simplifications or numerical procedures such as the stability regions discussed

in Chapter 2.

The statements in Proposition 2 not only apply to processes from the equicorrela-

tion model, but to the wider class of multivariate scale models with a bounded scaling

function K(ft;λ). As such, the results of this proposition can be used for correlation

models with multiple time varying correlations. Also note that the geometric ergod-

icity property entails that the simulated paths converge to the stationary distribution

at an exponential exponential rate.5

5A Markov chain {ft}t=0,1,2,... is said to be geometrically ergodic if there exists some constant
0 < s < 1 such that the Markov chain n-step transition probability P

n(·|f) and the stationary
distribution π(·) satisfy the relationship

‖Pn(·|f)− π(·)‖ ≤Msn for all f ∈ F .
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The boundedness of K(ft;λ) depends on the boundedness of the product of the

scaling function S(ft;λ) and the Jacobian Ψ(ft) in Proposition 2. For GAS models

that use particular forms of information matrix scaling as in equation (2.5), we can

establish boundedness ofK(ft;λ) and thus stationarity and ergodicity (SE) as a direct

consequence of the above result. This is stated in the following two corollaries.

Corollary 2. Consider the model described by equations (3.8)–(3.11) with scaling

matrix S(ft;λ) = (I(ft;λ))−a and rank(Ψ(ft)) = k ≤ rank(Ipu,λ − vec(In)vec(In)). If

either of the following two conditions holds,

(i) a = 1/2;

(ii) a ∈ {0, 1}, and |h(ft;λ)−1
i,j ∂hr,s(ft;λ)/∂fl| ≤ K < ∞ for all i, j, r, s = 1, . . . , n,

l = 1, . . . , k, and all f ∈ F ;

then (3.33) is satisfied. If also the other conditions of Proposition 2 hold, there exists

a stationary and ergodic solution ft to equations (3.8)–(3.11).

Corollary 3. The Gaussian GAS equicorrelation model of Corollary 1 with unit

scaling function S(ft;λ) ≡ 1 has a stationary and ergodic solution if β has modulus

less than one. Furthermore, for a Student’s t model, if the chain {ft} is psi-irreducible,

then stationarity can be ensured under the same assumptions.

The simple structure of the GAS-DECO model enables us to establish a straight-

forward intuition for the above results. For instance, in the case of Example 1 in

Section 3.2 we saw for the bivariate normal distribution that we can write the score
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as K(ft;λ) = (
√
1− ρ(ft;λ)2 , ρ(ft;λ)) and mt = m(ut) = (u1tu2t , 1 − u22t)

⊤. The

vector K(ft) in this case lies on the unit circle and therefore always has full rank.

Corollary 3 then ensures a stationary and ergodic solution ft exists if ‖β‖ < 1. For

the adjusted tanh parameterization in equation (3.17) and unit scaling S(ft;λ), we

also obtain that K(ft;λ) is bounded, though we can no longer ensure that K(ft;λ)

always has full rank.

The nature of the current conditions differs from conditions in Chapter 2. From

a stochastic process perspective, the stationarity conditions are less strict. A partic-

ularly appealing feature of the current approach is its invariance to the dimensions

of yt and ft, the fat-tailedness of ut, and observationally equivalent decompositions

of yt into ut. On the other hand, by having imposed the stricter conditions in the

previous chapter, we had additionally gained uniqueness and convergence properties

of the stochastic recurrence equations.

A theoretical investigation of the necessary conditions is beyond the scope of this

paper as standard tools for characterizing explosiveness as ‖β‖ ≥ 1 due to Nelson

(1990) and Klüppelberg et al. (2004) make use of the linear updating scheme of the

GARCH model; see also Kleibergen and van Dijk (1993) and Francq and Zaköıan

(2012). This contrasts sharply with the nonlinear structure of typical GAS recursions.
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Finally, we establish moments of the stationary solution in the following proposi-

tion.

Proposition 3. Under the assumptions of Corollary 2, if E‖mt‖r <∞, then E‖ft‖r <

∞.

Proposition 3 establishes the existence of moments of ft as generated by the non-

linear GAS recursion using the uniform boundedness of K(ft;λ) and the existence of

moments of the i.i.d. sequence mt.

3.4 Simulation evidence

We compare the ability of the GAS-DECO and DCC-DECO model to extract a

time-varying correlation parameter in cases where neither model is correctly speci-

fied. As in Engle (2002a), we consider deterministic correlation patterns in the data

generating process and extract the time-varying correlations via the GAS-DECO and

DCC-DECO filters. We report the results for four different patterns: a single large

break, a trigonometric sine function, an exogenous AR(1) process, and a local level

(LL) model. We consider the Student’s t distribution with λ degrees of freedom

for the error density pu. The results are summarized in Table 3.1 and Figure 3.4

for cross-sectional dimensions n ∈ {2, 10, 100} and fat-tailedness of the observation

density ν ∈ {5,∞}.

Table 3.1 reveals that the score-driven equicorrelation approach outperforms the
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Table 3.1: Signal Extraction Results

Notes: We present the mean squared error (MSE), median absolute deviation (MAD), and
likelihood value based on a multivariate Gaussian observation density (QLIK) for different data
generating processes. Each process is simulated 100 times. The GAS-DECO model is estimated
with unit scaling (a = 0). The different data generating processes are visualized in Figure 3.4.

(a) Gaussian noise

n = 2 n = 10 n = 100
MSE MAD QLIK MSE MAD QLIK MSE MAD QLIK

Break GAS 0.0675 0.0387 −2551 0.0409 0.0198 −10300 0.0235 0.0102 −90727
DCC 0.0745 0.0430 −2553 0.0564 0.0295 −10327 0.0529 0.0267 −91179

Sine GAS 0.1189 0.0742 −2554 0.0592 0.0357 −10359 0.0330 0.0204 −91554
DCC 0.1299 0.0798 −2560 0.0831 0.0529 −10441 0.0757 0.0463 −92693

AR(1) GAS 0.1580 0.1110 −2575 0.1211 0.0806 −10434 0.0984 0.0656 −91584
DCC 0.1606 0.1133 −2578 0.1414 0.0997 −10552 0.1366 0.0965 −93658

LL GAS 0.1040 0.0699 −2729 0.0621 0.0394 −12467 0.0403 0.0252 −116301
DCC 0.1089 0.0726 −2730 0.0761 0.0480 −12485 0.0696 0.0438 −116613

(b) Student’s t(5) noise

n = 2 n = 10 n = 100
MSE MAD QLIK MSE MAD QLIK MSE MAD QLIK

Break GAS 0.0749 0.0482 −2563 0.0479 0.0258 −10330 0.0403 0.0207 −90788
DCC 0.0953 0.0578 −2566 0.0692 0.0393 −10362 0.0643 0.0353 −91249

Sine GAS 0.1287 0.0774 −2560 0.0744 0.0441 −10382 0.0615 0.0374 −92454
DCC 0.1558 0.0990 −2573 0.1003 0.0610 −10479 0.0900 0.0565 −93453

AR(1) GAS 0.1622 0.1108 −2578 0.1321 0.0865 −10477 0.1275 0.0814 −93140
DCC 0.1733 0.1237 −2581 0.1520 0.1081 −10573 0.1475 0.1047 −94051

LL GAS 0.1088 0.0729 −2741 0.0698 0.0451 −12475 0.0610 0.0388 −116188
DCC 0.1377 0.1004 −2742 0.0897 0.0566 −12491 0.0839 0.0522 −116416

DCC-based updating scheme in terms of root mean squared error (MSE), median

absolute deviation (MAD) and likelihood-based (Kullback-Leibler divergence) loss

functions (QLIK) for all dimensions n, data generating processes, and distribution

choices.

Figure 3.4 moreover shows that the relative performance of the GAS-DECO filter
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depends on the informativeness of the likelihood. For instance, if the data is more

fat-tailed (λ = 5), the signal in the score is weaker and signal extraction results are

noisier. This can be seen from the wider grey areas in the figure for the Student’s t(5)

compared to the Gaussian distribution. Similar effects (not shown) can be observed

when changing the cross-sectional dimension and the level of correlation. These prop-

erties are conveniently summarized by the properties of the information matrix. It is

straightforward to show that in the case of the GAS-DECO ∂It/∂n > 0, ∂It/∂ν > 0

and ∂It/∂|ρ| > 0. A larger expected curvature of the likelihood as described by the

conditional Fisher information matrix implies a more precise signal extraction.

3.5 Empirical applications

3.5.1 S&P500 equity returns

In this section we study the time-varying equicorrelation between the constituents

of the S&P 500. We use data stock return data from January 1, 2000 to December 31,

2012 for the companies listed in Table 3.6 in the appendix of this chapter. To fully

focus on the correlation part of the model, we first filter all series using a GJR(1,1)-

model.6 In order to keep the GAS-DECO and DCC-DECO comparable, we use the

same marginal filter for both models rather than using a GAS based filter for the

GAS-DECO, and a GJR filter for the DCC-DECO. Having obtained the standard-

6The results are robust to using an EGARCH(1,2) model for the marginal volatilities.
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ized residuals from this marginal filtering step, we model the subsequent dependence

dynamics using the DECO specification.

Note that this two-step procedure is possible due to the use of the Gaussian QML

criterion for estimation. Other criterion functions typically cannot be decomposed

into two separate terms relating to volatilities and correlations, respectively. If the

criterion cannot be decomposed in this way, the computational appeal of the two-step

procedure is lost.

The role of the Student’s t degrees of freedom parameter ν is subtle and requires

further discussion. In the full dataset we estimate the average marginal degrees of

freedom in the filtered residuals to be approximately 6. Contrasting to the focus of

Creal et al. (2011) on density forecasting, this paper has followed a QML approach

to estimate the latent dynamic equicorrelation. Thus the observation density and

the score-based updating rule are not necessarily linked in the current approach. In

fact, as the equicorrelation assumption misspecifies the model to favor parsimony,

it is desirable to make the innovations to the time-varying parameter robust to the

implications of the misspecified likelihood. The signal to noise in GAS models is

jointly determined by ν and α in the score based updating scheme. To avoid possible

identification problems in finite samples, we fix ν = 5 to mimic a low signal-to-noise

ratio in economic data. This has worked well across a wide variety of applications

and data sets, yet with such a high degree of tail fatness we typically find in equity re-

turns, skewness in the distribution has a less pronounced effect for density forecasting
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(Creal and Tsay, 2014; Lucas et al., 2014).

Figure 3.1 displays the filtered correlations based on QML estimation. Table

3.2 summarizes these results. Compared to the DCC formulation of Engle and Kelly

(2012), we see in fact quite similar patterns. The equicorrelation is relatively moderate

in the beginning of the 2000’s and increases clearly in times of time crisis. The

pronounced difference is in periods where the correlation goes up for short episodes.

The DCC formulation is more volatile and gives almost always somewhat higher

equicorrelation point estimates. This is in agreement with the discussion Example 1,

demonstrating that the score includes a penalty term induced by tail dependence.

As a diagnostic device to explore model uncertainty among different equicorrela-

tion models, we also compare the GAS filtered paths with the particle filter output,

where the score-driven innovations in the state equation are replaced with orthogo-

nal NID (0, 1) shocks and static hyperparameters are obtained from ML estimation

of the observation-driven GAS model.7 It striking that both filtered paths largely

coincide, supporting the closeness of parameter driven models and GAS observation-

driven models simulations on real economic data.8 As a benefit, the confidence bands

around the paths of the parameter driven model reveal that the equicorrelation truly is

time-varying, and the differences between the DCC-DECO and GAS models substan-

tially differ in single episodes where the DCC-DECO-filtered equicorrelation shoots

up.

7In order to ensure homoskedasticity of the innovations in both models, we implement the equicor-
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Table 3.2: QML estimation of equicorrelation models

Notes: The GAS model is estimated with unit information scaling (a = 0) due to the variance
stabilizing Fisher transformation. The DCC column follows the approach by Engle and Kelly
(2012). The analysis is conducted for the period between January 1, 2000 and December 31, 2012.
The included 154 stocks are reported in Table 3.6.

DCC-Deco t(5)-GAS-Deco t(ν)-GAS-Deco t(ν)-GAS-Deco
QMLE QMLE QMLE MLE

ν DoF 5.0000 38.2290 4.9717
(0.0324) (0.0020)

c 0.0073 −0.0612 −0.0094
(0.0000) (0.0000) (0.0000)

α 0.0528 0.0303 0.0263 0.0078
(0.0000) (0.0000) (0.0000) (0.0000)

β 0.9411 0.9950 0.9224 0.9818
(0.0001) (0.0002) (0.0009) (0.0002)

LogL −636298 −635283 −633437 −614744
AIC 1272602 1270573 1266883 1229496
BIC 1272621 1270591 1266908 1229520

Both models have quite similar economic implications in terms of the extracted

equicorrelation. It is interesting to observe that the relative performance of both mod-

els varies systematically over time as documented by the cumulative quasi-likelihoods

plot in Figure 3.1. In tranquil times, both models have a comparable performance,

whereas periods with the presence of outliers favor the robust (ν = 5) GAS specifica-

tion. This feature of the data can be incorporated in a more refined regime-switching

multivariate models of Haas et al. (2004) and Boudt et al. (2012). We further note

that the GAS equicorrelation model can be in principle estimated without impos-

ing the stationarity constraints as they are typically satisfied when implementing an

relation model with square root information matrix scaling (a = 1/2).
8See also Koopman et al. (2012) for a simulation study under a controlled setting.
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unconstrained optimization procedure.

3.5.2 A joint model to extract information from

options data

A central question in financial economics addresses the information content in

traded options. As option prices are determined by investor expectations (and pos-

sibly also by preferences), one would expect that options data would provide the

econometrician with valuable information regarding the latent dynamics of the un-

derlying asset.

Recent literature on risk sharing and portfolio choice considers the impact of

uncertain diversification opportunities on aggregate and individual decisions, see also

? and Christoffersen et al. (2012). Driessen et al. (2009) develop a partial equilibrium

model where the fear of deterioration of diversification opportunities is compensated

in equilibrium. More specifically, they interpret the difference between risk-neutral

and physical correlations as the correlation risk premium. Similarly, Buraschi et al.

(2010) develop a general equilibrium model with endogenous time-varying correlation

risk premia. They find that both theoretically and empirically, correlation risk premia

increase steeply in economic downturns, moreover it is correlation risk premia and

not necessarily variance risk premia, which are priced in equilibrium. This result

is complemented by Merton’s ICAPM model, in which the hedging demand against
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correlation risk is found to be of greater magnitude than hedging motives for volatility

risk.

In this application, we are less interested in the full multivariate density of in-

dividual stock index constituents and focus on the underlying correlation levels and

risk premia estimates. In order to avoid the adverse effects of mis-specification to

such a high-dimensional observation density, we apply the QML estimation routine,

which ensures consistent estimates of the static model parameters even when the ob-

servation density is unknown. In doing so, we depart from the finance literature on

correlation risk premia by specifying a full joint model for options and returns data.
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Figure 3.1: Comparison of equicorrelation models

Notes: Based on QML estimation with Student’s t score and n = 154. The estimation results are
summarized in Table 3.2. The shadowed areas denote periods of NBER recessions.
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(b) Correlation risk premia

Figure 3.2: Correlation path estimates

Notes: In panel (a), the red lines depict filtered time-varying parameters. The blue (green) lines
reflect long(short)-term options data. The black crosses depict GAS-extracted physical correlations.
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The data stems from the Chicago Board Options Exchange (CBOE), which, as

of January 3, 2007, reports market-implied estimates of the average correlation of

representative stocks comprising the S&P 500 Index (SPX). Using SPX options prices,

together with the prices of options on the 50 largest stocks in the S&P 500 Index,

the CBOE S&P 500 Implied Correlation Indexes offers insight into the relative cost

of SPX options compared to the price of options on individual stocks that comprise

the S&P 500. CBOE calculates and disseminates two indexes tied to two different

maturities, usually one year and two years out, with rotating tickers: ICJ, JCJ and

KCJ. The underlying options have a fixed maturity (January of the following year

and the year thereafter). An overview of the included stocks is reported in Table 3.6

in the Appendix.9

We can calculate the option-implied variance of a portfolio as the weighted sum

individual option-implied volatilities

(
σIVSPX

)2
=

N∑

i=1

w2
i

(
σIVi
)2

+
∑

i 6=j
wiwjρijσ

IV
i σIVj (3.35)

and by restricting the pairwise correlations to be identical (i.e., ρij ≡ ρ̄) we have

ρ̄ =

(
σIVSPX

)2 −∑N
i=1w

2
i

(
σIVi
)2

∑
i 6=j wiwjρijσ

IV
i σIVj

,

9A practical issue one needs to deal with is that in raw data, the implied correlations are not
always bounded by one in absolute value. In the full sample we have 3 degeneracy occasions in short
term implied correlations during the peak of the financial crisis, more specifically on 06-Nov-2008,
13-Nov-2008, and 20-Nov-2008, we treat these observations as missing, as is common in the state
space framework.
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where σIVSPX and σIVi reflect index implied and individual stock implied volatilities,

respectively. These are obtained by inverting the Black-Scholes option pricing formula

for at-the-money options. We illustrate the individual weights of the N = 50 stocks

in Table 3.6 in the appendix of this chapter for a given date of May 29, 2009. These

weights vary of course over time, and are accounted for by the time series of ρ̄ as

obtained directly from CBOE.

Furthermore, the average correlation can also be traded in practice. As the index

volatility is increasing in ρ̄ for given values of wi and σIVi , one can bet on future

implied correlations by means of a long-short trading strategy that involves taking

opposite positions in index and individual asset volatility derivatives such as straddles

or variance swaps.

The model developed in this paper enables us to further study time-varying cor-

relation risk premia, which are defined as the difference between risk neutral and

physical correlation parameters. We adopt a measurement error perspective in a dy-

namic joint model for returns and option-implied data. We define a structural time

series model by augmenting the tanh∗
n-parametrized equicorrelation system (3.8)–

(3.11) with the measurement equations for short term and long term option-implied

correlations (with maturities in the following year for ρShortt and in the year there-

after for ρLongt , respectively). The additional measurement equations and recurrence
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equations for time-varying parameters are formulated by

tanh∗
n
−1
(
ρ̄Shortt

)
= γShort + fShortt + fCorrt + εShortt , εShortt

i.i.d.∼ (0, σ2
Short) (3.36)

tanh∗
n
−1
(
ρ̄Longt

)
= γLong + fLongt + fCorrt + εLongt , εLongt

i.i.d.∼ (0, σ2
Long) (3.37)

and specifying the factor dynamics by




fShortt+1

fLongt+1

fCorrt+1




=




0

0

ω




+




β1 0 0

0 β2 0

0 0 β3







fShortt

fLongt

fCorrt




+




α1 0 0

0 α2 0

0 0 α3







∇Short
t

∇Long
t

∇Corr
t



,

(3.38)

where ∇Long
t and ∇Short

t stem from location models (3.36) and (3.37) for inverse

tanh∗
n-transformed option-implied correlations and are calculated from a Student’s t

density with νOptions degrees of freedom. For assets’ equity returns, the role of the

usual equicorrelation update ∇Corr
t was discussed earlier in this paper. The physical

correlations are modeled by a mean-reverting process as discussed in the previous

section.10 The long-run correlation risk premia are captured by γShort for short-dated

options and by γLong for long-dated options. Furthermore, changes in the short-dated

and long-dated correlation risk premia are captured by the respective time-varying

10One could extend this model by specifying parametric models to describe expectation of phys-
ical correlations at option maturity (see also van Dijk et al. (2014)). However, we do not find an
improvement in considering the standard functional forms that are derived from the notion of a
mean-reverting physical correlation process.
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Table 3.3: Parameter estimates for the dynamic correlation risk premia model

Parameter α1 α2 α3 β1 β2 β3 ω γShort γLong 1/νOptions

Estimate 0.0704 0.0559 0.0069 1.0044 1.0056 0.9957 0.0012 0.3486 0.4129 0.4818

parameters fShortt and fLongt . Such a parsimonious specification serves to capture the

basic features of option-implied correlation data, namely correlation risk premia and

time-variation thereof.

The model is estimated by maximizing the joint quasi-likelihood function corre-

sponding to the measurement equations in (3.8), (3.36) and (3.37). The parameter

estimates for the joint model are given in Table 3.3, while the filtered time-varying

parameter paths are presented in Figure 3.3. Furthermore, Figure 3.3 extracts the

dynamic risk premia. The model-implied risk-premium, i.e., the average absolute

difference between correlations under physical and risk-neutral measure (captured in

a non-linear manner by the parameter γShort), is around 0.20, which is in line with

prevailing estimates in the literature (cf. Buraschi et al., 2010).11 There are several

outliers in the options data, such that the estimated Student’s t degrees of freedom

parameter is close to two.12 As the model is fitted jointly on both equity returns

and option price data, the dynamic physical correlation paths are also partly deter-

11The unconditional risk premia are inferred as the average difference between the fitted physi-
cal correlations and option-implied correlations. Alternatively, a model-based quantity to describe
correlation risk premium can be computed as tanh∗n

(
ω/(1− β3) + γ

)
− tanh∗n

(
ω/(1− β3)

)
.

12The dates with notable spikes in long term option-implied correlations are: a) 03-Mar-2010,
b) 21-Nov-2011, c) 20-Nov-2013, which are in the vicinity of the following macroeconomic events:
a) The U.S. Treasury reiterates its commitment to protecting holders of debt in Fannie Mae and
Freddie Mac (05-Mar-2010); b) Fed issues final rule on annual capital plans & Fed launches 2012
review, i.e. stress test (22-Nov-2011); c) JPMorgan agrees $13bn settlement with U.S. over mortgages
(19-Nov-2013).
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mined by the fit on options data. Smoothness of the jointly extracted paths suggests

that the noisiness of the time-varying parameter paths is reduced by incorporating

additional measurement equations. Large changes in dynamic physical correlations

will also influence the fit of the option implied correlation measurements in (3.36)

and (3.37), which favors smaller absolute values of physical correlation innovation

parameter α3 such that the extracted physical correlation paths will be smoother.

Furthermore, in an unreported analysis via Nyblom tests, we do not find remaining

time-variation in short term option residuals, but the long term options seem more

volatile, possibly due to liquidity issues in long-maturity options, which could make

the market prices for individual options less reliable and therefore distort our market

implied correlation data. Our measurement error perspective captures such liquidity

issues by introducing an error term in the option-implied correlation measurements

(3.36) and (3.37). This way, we can estimate the signal content of option market

implied correlation data.

Another striking feature of the fitted model is that the shocks to option-implied

correlation risk premia are estimated to have an explosive impact. On the other hand,

we obtain an estimated near, but smaller than a unit root for the innovation for the

physical dynamic correlation parameter (β̂3 = 0.996). We see from Figure 3.3 that the

option implied correlations exhibit much more persistence than the estimated path of

physical correlations might also explain why the literature finds no predictive power of

option-implied correlations for realized correlations (see also Buss and Vilkov, 2012;
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Christoffersen et al., 2011; DeMiguel et al., 2013): the two series have different dy-

namic properties, implied correlations being the most persistent. The estimated ex-

plosive behavior of the implied correlation dynamics makes statistical inference hard

in this specific setting as much of the asymptotic theory used to derive the standard

errors makes use of the stationarity assumption. This is why I refrain from reporting

standard errors in this case.

The time-varying nature of correlation risk premia is preferred over constant risk

premia in terms of tests for remaining time variation in the model residuals. Table 3.4

conducts Nyblom tests on the inverse tanh∗
n-transformed implied option correlations.

We do indeed observe that the remaining time variation in residuals as measured

by the Nyblom test statistic is reduced by introducing a time-varying parameter

model. Furthermore, Figure 3.3 compares the option implied correlations to the

model implied fit. We observe that constant risk premia impose parallel shifts of

option risk premia, while the observed data can exhibit persistent deviations from

this restriction.

Table 3.4: Nyblom tests for remaining time variation in residuals

Short term implied correlation Long term implied correlation
Constant model TVP model Constant model TVP model

Test Statistic 3.1405 0.4379 11.3297 1.2614
Reject at 5% level Yes No Yes Yes
Reject at 10% level Yes Yes Yes Yes

Notes: The test statistic refers to a Nyblom test with the null hypothesis of no remaining time
variation in residuals.
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The time-varying parameter model enables us to uncover dynamic features of

option pricing markets. It is interesting to note that during the outbreak of the

global financial crisis in 2008 and during the European debt crisis in 2011, the option

market implied short term correlations were in an elevated state when compared to

option implied long term correlations. A similar pattern has been established for

implied volatilities, such that short-term implied volatilities tend to exceed long-term

implied volatilities during periods of financial distress (see e.g. Koijen et al., 2015).

On the other hand, according to the best knowledge of the author, dynamics of the

correlation term structure have remained unexplored by the financial option pricing

literature. In view of (3.35), there are two channels why index options become more

expensive during crisis events. First, the volatilities of the underlying stocks are in

relatively elevated levels with respect to their time series averages. Second, the short

term market-expectation of correlations among the index constituents is relatively

higher than the long term correlation expectations. In bull markets on the other hand,

such as the period from 2012 until 2014, the long term option implied correlations

exceed the short term counterparts, constituing an insurance risk premium or indeed

a “correlation risk premium” for writing index options.
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(a) Short term implied correlations
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(b) Long term implied correlations

Figure 3.3: Comparison of constant versus time-varying parameter models

Notes: We take the inverse tanh∗n-transform of implied correlation as defined in the measurement
equation (3.36) and (3.37), and compare the fit of the GAS time-varying correlation risk premia
model (solid black line) with a constant risk premium model (dashed black line).
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3.6 Conclusion

We recognize that score-driven correlation models give parametric weights to ex-

isting dynamic time-varying parameter updating schemes of Engle (2002a) and Patton

(2006b). However, in higher dimensions the pre-existing dynamic innovations might

become numerically cumbersome. Therefore, we introduced an alternative univariate

updating mechanism, which enables a quick estimation routine in high dimensions,

well beyond the cross-sectional dimension of 100 assets. Furthermore, the approach

accommodates the estimation of dependence in unbalanced panels that may include

missing observations. Empirically we corroborate the success of the dynamic equicor-

relation model of Engle and Kelly (2012). Moreover, it is striking that the score-

driven equicorrelation model gives nearly identical patterns when compared to a cor-

responding stochastic equicorrelation model obtained via particle filtering (see also

Figure 3.5 in the appendix of this chapter). In a simulation study, the score-based

approach outperforms the DCC approach in capturing the latent correlation patterns.

While having focused on modeling the dynamic equicorrelation, we have come

across different theoretical properties of Generalized Autoregressive Score models of

Creal et al. (2013). In short, in spite of the inherent non-linearities in correlation

modeling, we still find that stationarity and ergodicity can be ensured under the

relatively simple constraint that the autoregressive parameter is less than unity in

absolute value.

There still remain open questions which we have not addressed by this paper.
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Theoretically, one may delve deeper into the sharpness of the ergodicity conditions

to establish simpler irreducibility properties for score driven models with fat-tailed

innovations. We leave this for future work.

3.A Proofs

Proof of Proposition 1. Given the log density of the scale model

log py(yt|ft;λ) = log pu(h(ft)
−1yt)− log det(h(ft)),

we obtain

∇ =
∂ log pu(h(ft;λ)

−1yt)

∂ft
− ∂ log det(h(ft;λ))

∂ft

=

(
∂vec(h(ft;λ))

∂ft

)⊤
(
∂(h(ft;λ)

−1yt)

∂vec(h(ft;λ))

⊤
∂ log pu(ut)

∂ut
− ∂ log det(h(ft;λ))

∂vec(h(ft;λ))

)

=

(
∂vec(h(ft;λ))

∂ft

)⊤ (
−
(
h(ft;λ)⊗ h(ft;λ)

⊤)−1
(yt ⊗ In)∇pu,λ(ut)− vec

(
(h(ft;λ)

⊤)−1
))

=

(
∂vec(h(ft;λ))

∂ft

)⊤ (
In ⊗ h(ft;λ)

−1
)⊤

vec
(
−∇pu,λ(ut)u

⊤
t − In

)

= Ψ(ft;λ)
⊤vec

(
−∇pu,λ(ut)u

⊤
t − In

)
.

Proof of Proposition 2. In order to establish geometric ergodicity, we use the drift
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conditions in Cline and Pu (1999) for recursions of the form

ft+1 = α(ft) + γ(ut; ft), (3.39)

where ut is an i.i.d. sequence of random variables, independent of the initial state f0.

This recursion encompasses the GAS(1,1) model by defining

α(ft) := ω + βft (3.40)

γ(ut; ft) := K(ft)m(ut). (3.41)

We next restate the key conditions and verify their validity.

Assumption 1 (Assumption 2.1 of Cline and Pu (1999)). Assume {ft} is an ape-

riodic, ψ-irreducible T-chain satisfying (3.39). Let r > 0 and define θ(f) = α(f)
1+‖f‖ .

Assume that

(i) α is unbounded on R
k and θ is bounded on R

k;

(ii) sup‖f‖≤M E (‖γ(u1; f)‖r) <∞ for all M <∞;

(iii) lim‖f‖→∞ E

[
‖γ(u1;f)‖r

‖f‖r
]
= 0.

Before verifying the stability conditions (i) – (iii), we demonstrate the require-

ments for Markov chain to satisfy the conditions for the setting of Cline and Pu (1999)

to apply.
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Lemma 5 (Lemma 1 of Bec et al. (2008)). Under Assumption (3.34) the Markov

chain {ft}t is psi-irreducible and aperiodic.

Due to the assumption (3.34), the required aperiodicity and psi-irreducibility fol-

low directly from Lemma 1 in Bec et al. (2008). In order to confirm the definition

T-Chain property, we need to verify that there exists a kernel T and a (possibly

trivial) probability distribution {an} on the nonnegative integers such that

(a) T (f,F) > 0 for all f ∈ F ;

(b) T (·, A) is continuous for all A ∈ B(F);

(c)
∑∞

n=0 anPn(f, A) ≥ T (f, A) for all f ∈ F , A ∈ B(F).

The properties (a)–(c) also follow from (3.34) as we can simply set T (f, A) := P(ft+k ∈

A|ft = f) and {an} := {1 [n = k]}.

We now validate the rest of assumptions

(i) See (3.40) and observe ‖θ(f)‖ ≤ ‖ω‖+ ‖β‖.

(ii) For all M < ∞ sup‖f‖≤M E‖γ(m1; f)‖r ≤ K E‖m1‖r < ∞, where the moment

condition on m1 was assumed in the lemma.

(iii) By the majorant criterion,

lim
‖f‖→∞

E
‖γ(m1; f)‖r

‖f‖r ≤ lim
‖f‖→∞

K
r

‖f‖rE‖m1‖r = 0.
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Taking the test function ‖x‖r with (Cline and Pu, 1999, Theorem 3.2 and their

expression (3.4)) finalizes the proof as lim‖f‖→∞ sup ‖θ(f)‖ = lim‖f‖→∞ sup ‖ ω+βf
1+‖f‖‖ ≤

‖β‖ < 1 by the eigenvalue condition on β. Beta-mixing is then implied by geometric

ergodicity (see also Francq and Zakoian, 2011, p.66).

We show the existence of second moments to establish covariance stationarity

of the strictly stationary backwards limit uft of ft(f0) by a direct calculation. Let

Ω := Em1m
⊤
1 .

‖Var[uft]‖ =
∥∥∥Var[ lim

t→∞
ft(f0)]

∥∥∥ =

∥∥∥∥∥Var
[
lim
t→∞

t∑

i=0

βiαK(ft−i)mt−i

]∥∥∥∥∥

=
∥∥∥ lim
t→∞

t∑

i=0

βiαE
[
ft−iK(ft−i)

⊤
Et−i+1[mt−im

⊤
t−i]K(ft−i)

⊤]α⊤(β⊤)i

+
∑

i<j

E
[
βiαK(ft−i)mt−iEt−i

[
m⊤
t−jK(ft−j)

⊤α⊤(β⊤)j
]]

+
∑

i>j

E
[
Et−j

[
βiαK(ft−i)mt−i

]
m⊤
t−jK(ft−j)

⊤α⊤(β⊤)j
]∥∥∥

≤ lim
t→∞

∥∥∥∥∥
t∑

i=0

βiαE

[
sup
ft−i

{K(ft−i)
⊤ΩK(ft−i)

⊤}
]
α⊤(β⊤)i

∥∥∥∥∥ (3.42)

where we used Fubini’s theorem, because expression (3.42) stays finite as t→ ∞ if β

has modulus less than one, due to the boundedness conditions on K(·).

Proof of Corollary 1. As the equicorrelation matrix depends only on one param-

eter, we can pick any decomposition h(ft) to derive the score. To simplify notation,
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we drop the arguments of ρ(ft), h(ft;λ), and related functions and simply write ρ, h,

etc. We also write ρ̇ and ρ̈ for the first and second derivative of ρ(ft) with respect to

ft. A similar notation holds for the derivatives of other functions with respect to ft.

To derive the expressions for ρ1 to ρ6, define

ρ7 =
√
1− ρ, (3.43)

ρ8 = n−1 ·
(√

1 + (n− 1) · ρ−
√
1− ρ

)
, (3.44)

ρ9 = ρ−1
7 = (1− ρ)−1/2, (3.45)

ρ10 = n−1 ·
(
(1 + (n− 1) · ρ)−1/2 − (1− ρ)−1/2

)
. (3.46)

We set

h = ρ7In + ρ8ιnι
⊤
n , h−1 = ρ9 In + ρ10ιnι

⊤
n , (3.47)
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such that hh⊤ = hh = h2 = (1− ρ) In + ριnι
⊤
n . Define the functions

ρ̇ = 2n−1 · (1− ρ) (1 + (n− 1) · ρ) , (3.48)

ρ1 = −n−1 · (1 + (n− 1)ρ), (3.49)

ρ2 = n−1, (3.50)

ρ3 = −n−1(1 + (n− 1)ρ)(1− ρ)−1, (3.51)

ρ4 = n−1
(
(1 + (n− 1)ρ)−1 + ρ(1− ρ)−1

)
, (3.52)

ρ5 = ρ29 = (1− ρ)−1, (3.53)

ρ6 = (2ρ9 + nρ10) ρ10 = n−1
(
(1 + (n− 1) · ρ)−1 − (1− ρ)−1

)
. (3.54)
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We calculate the components in Proposition 1 by

Ψ = vec(h−1ḣ) = ρ̇ · vec
(
(ρ9In + ρ10ιnι

⊤
n )(ρ̇7In + ρ̇8ιnι

⊤
n )
)

(3.55)

= ρ̇ · vec
(
ρ̇7ρ9In + (ρ̇7ρ10 + ρ̇8ρ9 + nρ̇8ρ10)ιnι

⊤
n

)

= ρ̇ · vec
(
ρ5In + (ρ̇7ρ10 + ρ̇8ρ9 + nρ̇8ρ10)ιnι

⊤
n

)
(3.56)

= ρ1(ft;λ)vec(In) + ρ2(ft;λ)ιn2 ,

∇u,t = Ψ⊤vec
(
wu,tutu

⊤
t − In

)
= trace

(
ḣh−1

(
wu,tutu

⊤
t − In

))

= ρ1
(
−u⊤t ∇pu,λ(ut)− n

)
+ ρ2

(
−ι⊤∇pu,λ(ut)u

⊤
t ι− n

)
. (3.57)

u⊤t ut = y⊤t h
−1h−1yt = y⊤t (ρ9In + ρ10ιnι

⊤
n )

2yt = ρ29y
⊤
t yt + (2ρ9 + n ρ10) ρ10 · (y⊤t ι)2

= ρ5y
⊤
t yt + ρ6 · (y⊤t ι)2 =

y⊤t yt
1− ρ

+
(y⊤t ι)

2

n

(
1

1 + (n− 1) · ρ − 1

1− ρ

)
. (3.58)

Due to −∇pu,λ(ut)
⊤ut = wu(u

⊤
t ut;λ) · u⊤t ut, the required score expressions (3.24) and

(3.25) follow.

As a special case, consider Student’s t density. The i.i.d. score is then given by

∇pu,λ(ut) = −wtut, where

wt = −
(
(ν + n)/(ν − 2)

)
/

(
1 +

u⊤t ut
ν − 2

)
.

Finally, the Hessian can be computed directly from Lemma 1 in Creal et al. (2011)
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and by using (1/g)Ipu,λ = 2DD+ + vec(In)vec(In)
⊤ we have

It(ft) = Ψ(ft;λ)
⊤ [gIpu,λ − vec(In)vec(In)

⊤]Ψ(ft;λ)

= (ρ1(ft;λ)vec(In) + ρ2(ft;λ)ιn2)⊤
[
g
(
2DD+ + vec(In)vec(In)

⊤)− vec(In)vec(In)
⊤]

(ρ1(ft;λ)vec(In) + ρ2(ft;λ)ιn2)

= n
[
n(g − 1)(ρ1 + ρ2)

2 + 2g
(
ρ21 + 2ρ1ρ2 + nρ22

)]
,

where g = (ν + n)/(ν + n + 2). Compared to the available expressions in the score

literature, this is an improvement as the information matrix expression can be com-

puted at the cost of O(1) matrix operations. In the two-dimensional case, we have

It(ft) = 1 + ρ2 for the Gaussian density (g = 1).

Proof of Corollary 2. The result follows from the proof of Proposition 2, if we show

that the predetermined factor K(ft;λ) = S(ft;λ)Ψ(ft;λ)
⊤ from (3.22) is bounded.

For a matrix A ∈ R
m×n of rank r we can make use of the inequalities ‖A‖2 ≤ ‖A‖F ≤

√
r‖A‖2; ‖A‖F ≤ ‖A‖∗ ≤ √

r‖A‖F ; ‖A‖max ≤ ‖A‖2 ≤ √
mn‖A‖max;

1√
n
‖A‖∞ ≤

‖A‖2 ≤ √
m‖A‖∞; 1√

m
‖A‖1 ≤ ‖A‖2 ≤ √

n‖A‖1; ;‖A‖2 ≤
√

‖A‖1‖A‖∞; such that

the choice of norm is without loss of generality.

We discuss each of the choices a ∈ {0, 1/2, 1} below.

(i) Consider a = 1/2. The square root scaling is defined by S(ft;λ) = J (ft)
⊤ with
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It(ft)−1 = J (ft)
⊤J (ft). Without loss of generality, we recall the spectral norm:

‖K(ft;λ)‖2 = max
√

eig{K(ft;λ)⊤K(ft;λ)}.

In the case of a Gaussian weighing matrix, we have Hpu,λ = DD+ and therefore

K(ft;λ)
⊤K(ft;λ) = Ψ(ft;λ)

(
Ψ(ft;λ)

⊤Ψ(ft;λ)
)−1

Ψ(ft;λ)
⊤

can be recognized the Moore-Penrose as an idempotent form with eigenvalues

on the unit disc.

However if the weighing matrix Hpu,λ is allowed to follow a general form, no

closed form expression exists for µ due to the necessity to solve high-degree

polynomials for the above expression. However, any eigenvalue µ, corresponding

to eigenvector v of the matrix K(ft;λ)
⊤K(ft;λ) satisfies

µv = Ψ(ft;λ)
(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1

Ψ(ft;λ)
⊤v.

As rank(Ψ(ft;λ)) = k < n, we can pre-multiply both sides

by v⊤Ψ(ft;λ)(Ψ(ft;λ)
⊤Ψ(ft;λ))

−1Ψ(ft;λ)
⊤ to obtain

µv⊤Ψ(ft;λ)(Ψ(ft;λ)
⊤Ψ(ft;λ))

−1Ψ(ft;λ)
⊤v =

v⊤Ψ(ft;λ)
(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1

Ψ(ft;λ)
⊤v.
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Positive definiteness of h(ft) implies full rank of Ψ(ft;λ) and rank(Hpu,λ) ≥ k, if

Ψ(ft;λ)
⊤v = 0, this implies µ = 0 (as v 6= 0 by definition). Non-zero eigenvalues

can then be characterized by

µ =
v⊤Ψ(ft;λ)

(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1

Ψ(ft;λ)
⊤v

v⊤Ψ(ft;λ)(Ψ(ft;λ)⊤Ψ(ft;λ))−1Ψ(ft;λ)⊤v
(3.59)

≤ sup
ṽ∈Rk

ṽ⊤
(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1

ṽ

ṽ(Ψ(ft;λ)⊤Ψ(ft;λ))−1ṽ
(3.60)

And by the Rayleigh-Ritz theorem, we have

µ ≤
max eig

{(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1
}

min eig{(Ψ(ft;λ)⊤Ψ(ft;λ))−1} = sup
θ,ft

min eig{Ψ(ft;λ)
⊤Hpu,λΨ(ft;λ)}

max eig{Ψ(ft;λ)⊤Ψ(ft;λ)}
<∞

(3.61)

due to the existence of the inverses in the numerator and the denominator for

all ft.

(ii) Consider a = 0. Without loss of generality,observe for the Frobenius norm that

sup
f

‖Ψ(ft;λ)‖F = sup
f

√√√√
n2∑

i=1

k∑

l=1

|{(In ⊗ h(ft;λ)−1) ∂vec(h(ft;λ))/∂f⊤
t }i,l|2

≤ sup
f

√√√√
n2∑

i=1

k∑

l=1

|{(ιnι⊤n ⊗ h(ft;λ)−1) ∂vec(h(ft;λ))/∂f⊤
t }i,l|2

≤ n4kmax
i,j,r,s

sup
f

|∂hr,s(ft;λ)/∂fl|.
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(iii) Consider a = 1. In addition to the calculations in (ii) we have

sup
f

∥∥∥
(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1
∥∥∥
2
= sup

f
max eig

{(
Ψ(ft;λ)

⊤Hpu,λΨ(ft;λ)
)−1
}

= sup
f

min
1

eig
{(

Ψ(ft;λ)⊤Hpu,λΨ(ft;λ)
)} <∞,

where the last inequality follows from the full rank condition.

Remark 1. A higher order GAS(p, q) model of the form ft+1 = ω +
∑p

i=1 βift+1−i +

∑q
j=1 αjst+1−j, where st = K(ft;λ)mt can embedded in the reasoning of Propo-

sition 2 by reformulating the stochastic difference equation as ft+1 = w + Bft +

AK(ft;λ)mt, where ft = (f⊤
t , f

⊤
t−1, . . . , ft−p+1)

⊤,mt = (m⊤
t ,m

⊤
t−1, . . . ,m

⊤
t+1−q)

⊤, w =

(ω⊤, 0⊤, . . . , 0⊤)⊤ and

B =




β1 β2 . . . βp

Ik 0 . . . 0

0
. . . . . .

...

0 0 Ik 0




A =




α1 α2 . . . αq

0 . . . . . . 0

...
...

0 . . . . . . 0




K(ft;λ) =




K(ft;λ) 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 K(ft+1−q;λ)




. (3.62)
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The structure of the companion form is therefore conform to Proposition 2.

Proof of Corollary 3. We directly verify

∣∣h(ft;λ)−1
i,j ∂hr,s(ft;λ)/∂f

∣∣ ≤ C
∣∣∣(1− ρ)

√
1 + (n− 1)ρ− (1 + (n− 1)ρ)

√
1− ρ

∣∣∣ ≤ Cn.

Proof of Proposition 3. Consider the stationary solution and denote the Lr-norm

by ‖·‖r, we then have by successive applications of the Minkowski inequalities

‖uft‖r =
∥∥∥∥∥(In − β)−1ω +

∞∑

i=0

βiαsy,t−i

∥∥∥∥∥
r

≤
∥∥(In − β)−1ω

∥∥+
∞∑

i=0

E
[∥∥βiαsy,t−i

∥∥r] 1
r .

We can further approximate

∞∑

i=0

E
[∥∥βiαsy,t−i

∥∥r] 1
r ≤

∞∑

i=0

‖β‖i ‖α‖K ‖m1‖r <∞,

due to the eigenvalue condition on β and thus ‖β‖ < 1 as well as the condition

‖m1‖r <∞.

3.B Supplemental information
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Figure 3.4: Signal extraction under deterministic misspecification

Notes: The dark solid line presents the true time-varying equicorrelation pattern; the DCC-DECO model is presented by red squares
(· · ·� · · · ); the GAS-DECO model is presented by blue circles (− ◦ −). We present the pointwise average of the filtered correlations based
on the QML estimates of θ for cross-sectional dimension n = 100 and 100 replications. The dotted bands depict quantiles (10% and 90%)
of time-varying correlation estimates across simulations.
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Figure 3.4: Signal extraction under deterministic misspecification
(continued)

Notes: The dark solid line presents the true time-varying equicorrelation pattern; the DCC-DECO model is presented by red squares
(· · ·� · · · ); the GAS-DECO model is presented by blue circles (− ◦ −). We present the pointwise average of the filtered correlations based
on the QML estimates of θ for cross-sectional dimension n = 100 and 100 replications. The dotted bands depict 80% pointwise
confidence-bands across simulations.
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Table 3.5: The full universe of stocks included in the empirical analysis

Ticker Company Name Ticker Company Name Ticker Company Name Ticker Company Name

A Agilent Technologies Inc CSX CSX Corp JPM JP Morgan Chase & Co ROP Roper Industries Inc
AA Alcoa Inc CVC Cablevision Systems Co A JWN Nordstrom Inc SCG SCANA Corp
AAPL Apple Inc. CVX Chevron Corp K Kellogg Co SCHW Schwab Charles Corp
ABT Abbott Laboratories DD E. I. du Pont de Nemours and Company KO Coca-Cola Co SIAL Sigma-Aldrich Corp
AES AES Corp DELL Dell Inc KR Kroger Co SLB Schlumberger Ltd
AET Aetna Inc DHI Horton D.R. Inc LEG Leggett & Platt SLM SLM Corp
AIG American Intl Group Inc DIS Walt Disney Co LEN Lennar Corp SNDK SanDisk Corp
AIV Apartment Investment & Mgmt DOV Dover Corp LLY Lilly Eli & Co STJ St Jude Medical Inc
AKAM Akamai Technologies Inc DUK Duke Energy Corp LM Legg Mason Inc SYMC Symantec Corp
ALL Allstate Corp DVN Devon Energy Corp LMT Lockheed Martin SYY Sysco Corp
ALTR Altera Corp EBAY eBay Inc. LOW Lowe’s Cos Inc T AT&T Inc
AMAT Applied Materials Inc ED Consolidated Edison Inc LUV Southwest Airlines Co TAP Molson Coors Brewing Co B
AMD Advanced Micro Devices EIX Edison Intl MAS Masco Corp TE TECO Energy Inc
AMGN Amgen Inc EOG EOG Resources MCD McDonald’s Corp TEG Integrys Energy Group Inc
AON Aon plc ETFC E*TRADE Financial Corp MHP McGraw-Hill Cos Inc TER Teradyne Inc
APA Apache Corp EXC Exelon Corp MKC McCormick & Co TGT Target Corp
APD Air Products & Chemicals Inc F Ford Motor Co MMC Marsh & McLennan Companies TWX Time Warner Inc
AVY Avery Dennison Corp FAST Fastenal Co MMM 3M Co TYC Tyco Intl
AXP American Express Co FCX Freeport McMoRan Copper & Gold MO Altria Group Inc UNP Union Pacific Corp
BA Boeing Co FE FirstEnergy Corp MRK Merck & Co Inc USB US Bancorp
BAC Bank of America Corp FRX Forest Laboratories MS Morgan Stanley UTX United Technologies Corp
BAX Baxter Intl Inc GE General Electric Co MSFT Microsoft Corp VMC Vulcan Materials Co
BBY Best Buy Co Inc GPS Gap Inc MSI Motorola Solutions Inc VZ Verizon Communications Inc
BF-B Brown-Forman Corp B GT Goodyear Tire & Rubber Co MTB M&T Bank Corp WAG Walgreen Co
BLL Ball Corp HCBK Hudson City Bancorp MU Micron Technology Inc WFC Wells Fargo & Co
BMY Bristol-Myers Squibb HCP HCP Inc MYL Mylan Inc. WFM Whole Foods Market Inc
BRCM Broadcom Corp A HD Home Depot Inc NBR Nabors Industries Ltd WHR Whirlpool Corp
BRK-B Berkshire Hathaway B HON Honeywell Intl Inc NEE NextEra Energy Inc WMT Wal-Mart Stores
C Citigroup Inc HPQ Hewlett-Packard Co NUE Nucor Corp XL XL Group Plc
CAH Cardinal Health Inc HRB Block H & R Inc NVDA Nvidia Corp XOM Exxon Mobil Corp
CAT Caterpillar Inc HSY Hershey Foods Corp ORCL Oracle Corp XRAY Dentsply Intl
CCE Coca-Cola Enterprises HUM Humana Inc PBI Pitney Bowes Inc XRX Xerox Corp
CCI Crown Castle Intl Corp IBM Intl Business Machines Corp PCAR PACCAR Inc YHOO Yahoo Inc
CCL Carnival Corp IGT Intl Game Technology PFE Pfizer Inc YUM Yum! Brands Inc
CERN Cerner Corp INTC Intel Corp PG Procter & Gamble
CLX Clorox Co IPG Interpublic Group Cos PLD ProLogis Inc
CMI Cummins Inc IRM Iron Mountain Inc POM Pepco Holdings Inc
COP ConocoPhillips JDSU JDS Uniphase Corp PPL PPL Corp
COST Costco Wholesale Corp JNJ Johnson & Johnson RF Regions Financial Corp
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Table 3.6: Stocks included in the option index analysis on May 29, 2009

Ticker Company Name Weight Ticker Company Name Weight

AAPL Apple Inc. 0.0292 MCD McDonald’s Corp 0.0158
ABT Abbott Laboratories 0.0168 MDT Medtronic Inc 0.0093
AMGN Amgen Inc 0.0125 MMM 3M Co 0.0096
BAC Bank of America Corp 0.0174 MO Altria Group Inc 0.0085
BMY Bristol-Myers Squibb 0.0095 MON Monsanto Co. 0.0109
CMCSA Comcast Corp A 0.0096 MRK Merck & Co Inc 0.014
COP ConocoPhillips 0.0164 MSFT Microsoft Corp 0.0385
CSCO Cisco Systems Inc 0.0261 ORCL Oracle Corp 0.0181
CVS CVS Caremark Corp. 0.0105 OXY Occidental Petroleum 0.0131
CVX Chevron Corp 0.0322 PEP PepsiCo Inc 0.0195
DIS Walt Disney Co 0.0108 PFE Pfizer Inc 0.0247
GE General Electric Co 0.0343 PG Procter & Gamble 0.0367
GILD Gilead Sciences Inc 0.0095 PM Philip Morris International 0.0206
G Google Inc 0.0241 QCOM QUALCOMM Inc 0.0173
GS Goldman Sachs Group Inc 0.0175 SGP Schering-Plough Corp 0.0096
HD Home Depot Inc 0.0095 SLB Schlumberger Ltd 0.0165
HPQ Hewlett-Packard Co 0.0199 T AT&T Inc 0.0352
IBM Intl Business Machines Corp 0.0344 UPS United Parcel Service Inc B 0.0123
INTC Intel Corp 0.0211 USB US Bancorp 0.0081
JNJ Johnson & Johnson 0.0368 UTX United Technologies Corp 0.012
JPM JP Morgan Chase & Co 0.0335 VZ Verizon Communications Inc 0.0201
KFT Kraft Foods Inc A 0.0093 WFC Wells Fargo & Co 0.0261
KO Coca-Cola Co 0.0236 WMT Wal-Mart Stores 0.0268
LLY Lilly, Eli & Co 0.0084 WYE Wyeth 0.0144
LOW Lowe’s Cos Inc 0.0067 XOM Exxon Mobil Corp 0.0827

Notes: The basket weights are determined by market value.
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Figure 3.5: Comparison of GAS with particle filter output

Notes: The particle filter output corresponds to the parameter driven model with i.i.d. normal
innovations, where the dynamic parameters θ are estimated via QML, cf. Table 3.2. The particle
filter is implemented using the sequential importance sampling with resampling (SISR) method.
The dotted lines represent the 90% confidence intervals around the filtered correlations.
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Chapter 4

Adapting Filtering Equations to

Misspecification

Abstract. This chapter adapts time-varying parameter models to misspecification. We measure

misspecification by empirical deviations from model-implied moment conditions on time-varying

parameters and observed data. It can be empirically tested whether these moment conditions hold

for any particular sample at hand. If implied moment conditions fail to hold, alternative models

are proposed with partially dynamic hyperparameters. We provide further generalizations of the

standard GAS models in two examples. First, we allow for the intercept parameter to slowly vary

over time rather than being a static hyperparameter. Second, we embed leverage effects in a filtering

equation for volatility.
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4.1 Introduction

While the previous chapters have dealt with dynamic correlation models, modern

time series econometrics not only concerns modeling dynamic parameters, but also

accounting for changing patterns in latent processes. For instance, one pattern that

may change over time is the persistence of a latent process. The asymptotic analy-

sis of the models provided in previous chapters of this thesis suggests that as more

data become available, the estimated hyperparameters converge to some well-defined

(pseudo-) true values. However, in empirical settings we may find that the supposedly

constant pseudo-true parameters can vary substantially when we change the estima-

tion sample. In this chapter we present a filtering framework that accounts for such

dynamic misspecification by introducing time variation in dynamic hyperparameters

of a misspecified time-varying parameter model. We explicitly relate new, revised,

or extended model parameterizations to failed diagnostic checks for their simplified

counterparts. As in the rest of the thesis we restrict our attention to observation

driven models, which produce observable proxies for latent state variables.

It is generally straightforward to derive a set of model implied moment conditions

that directly follow from the model specification. Furthermore, in the context of

observation driven models, the data-based counterparts of model-implied moment

conditions are explicitly observed. Our approach centers around proposing alternative

or extended model parameterizations that better account for local deviations from

these moment conditions.
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For instance, consider the phenomenon of the Great Moderation stemming from

macroeconomics, which is associated with the period of lower volatility in output

due to business cycle fluctuations as of the mid 1980s until the Great Recession.

When applying off-the-shelf models, fitting models in different sub-samples can lead

to different implications for the fundamental characteristics of the model such as the

long-run level, persistence and signal-to-noise ratio – the so-called “deep parameters”

of the model, i.e., the parameters that fundamentally characterize the system settings

and behavior. This is a particularly fundamental issue within the economics discipline,

as we might evaluate policy interventions based on such fundamental data patterns.

We propose models with time-varying hyperparameters that better accommodate

misspecification of a dynamic model with constant hyper-parameters. An alternative

approach would be to fit time-varying parameter models on a rolling window basis.

However, in the context of dynamic non-linear models no closed-form expressions are

generally available for the maximum likelihood estimator. Therefore, a rolling window

procedure would require choosing the rolling window length and numerical likelihood

maximization within each of the rolling windows. This computationally cumbersome

approach is circumvented in our model-based approach.

As our first example, we revisit the models from previous chapters by particular-

izing the analysis to the familiar dynamic correlation models. We consider dynamic

models that allow the long-run mean to evolve over time. In the context of linear

processes, Dahlhaus et al. (1997) proposed so-called “locally stationary” models that
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capture stationary deviations from a non-stationary mean. Such a model structure

may prove useful if the data displays more serial dependence than expected from a

standard non-stationary model. Diebold (1986) even argues that omitted structural

breaks may spuriously generate long memory. There is extant literature available for

modeling shifts in the local mean of time-varying parameter models.1 Most closely

related to the example of changing long term means, Bauwens et al. (2013) accommo-

date changing levels in a trivariate DCC correlation model by a multistep procedure.

As our second example, we consider modeling time-varying volatility. We extend

robust GARCH models to include a leverage-type term in the model. By explicitly

combining the asymmetry and robustness features of the model, the model outper-

forms other available volatility models in terms of diagnostic checks and out-of-sample

forecasting performance.

The structure for the rest of this paper is as follows. Section 4.2 introduces the

concepts to guide us through the rest of the chapter. Section 4.3 introduces a time-

varying GAS model to capture variation in latent hyperparameters of the filtering

models. We find that constant dynamic hyperparameter specifications are rejected in

1Engle and Lee (1999) propose a GARCH unobserved components model that incorporates
time-varying volatility levels. Furthermore, taking the route of local spectral representations,
Stărică and Granger (2005) argue that it is sufficient to model stock market volatility by piecewise
constant paths. Dahlhaus et al. (2006) develop the theory for locally stationary ARCH processes;
see also Dahlhaus (2012) for a survey. Amado and Teräsvirta (2013) develop a specification test for
time-variation in unconditional volatility levels and subsequently adopt smooth threshold autore-
gressive (STAR) type models for capturing this source of non-linearity. Koo and Linton (2012) semi-
parametrically extract latent time-variation in the continuous time diffusion context. Giraitis et al.
(2014) semi-parametrically extract time-varying parameters under a high persistence assumption,
prominently providing confidence bands for impulse response functions in a vector autoregressive
framework.
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the empirical example of modeling correlations between UK and Greek stock indices.

By using a locally stationary version of the GAS model, one can achieve performance

gains in terms of out-of-sample model fit. Section 4.4 discusses the misspecification

of unconditional moment restrictions in the context of omitted leverage in robust

volatility filters. Finally, Section 4.5 concludes.

4.2 Adapting observation driven filters to

misspecification

Consider data yt characterized by the conditional density yt ∼ p(yt|ft,Ft−1), where

Ft denotes the filtration generated by the history of observations that are available

at time t and ft is a true univariate time varying parameter, such as for instance a

time varying mean, volatility, or correlation. We filter the data yt for an estimate of

the unknown time-varying parameter. All observation driven models in this thesis

satisfy the following decomposition of the filtering equation

ft+1 = γ (ft, θ) + ∆ (yt; ft, θ) , (4.1)

where θ denotes a vector of static hyperparameters. We assume the measurability

properties γt := γ (ft, θ) ∈ Ft−1, ∆t := ∆ (yt; ft, θ) ∈ Ft. The interpretation is

that γt captures the predictable drift term while ∆t describes the observation driven
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innovation term. For instance, in the specific case of a correctly specified plain vanilla

GAS models with square root information matrix scaling, we have γt = ω(1−β)+βft,

∆t = α I−1/2
t ∇(yt; ft) and θ = (ω, α, β), where ∇(yt; ft) denotes the score of the

predictive conditional density and It denotes the time t−1 Fisher information matrix.

For a data generating process from the GAS model, if the conditional density

p(yt|ft,Ft−1) and the transition dynamics are correctly specified, then for the model-

implied true parameters θ = θ0 and correct initialization of f0, we have the restriction

Eθ0 [∆ (yt; ft, θ0) |Ft−1] ≡ 0, where Eθ0 [ · |Ft−1] denotes the model expectation under

the true parameter θ0. Therefore, the moment restriction for the conditional mean is

of the form

Eθ0 [ft+1 |Ft−1] = γ
(
f 0
t , θ0

)
. (4.2)

In practice, the data may not conform to the above moment restriction for the

conditional mean. We may then have to come up with an improved functional form

of the filtering equation that would alleviate misspecification in the sense of the

moment restriction violation. For example, for the plain vanilla GAS model with

γ(ft, θ) = ω+βft we may find that over repeated observations the realized ft exceeds

the conditional mean γ(ft, θ). If such deviations are persistent, the information in the

data might be better exploited by providing an alternative model parameterization

with a conditional mean γ̃(ft, θ) that moves more closely in line with the realiza-

tions, e.g., that moves upwards if the realized time-varying parameters persistently

exceed the conditional mean. This can be achieved my making the originally static
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hyperparameter ω time varying.

The main task of the econometrician is now to come up with sensible transition

equations for ft+1 that are more flexible and give fewer violations of model implied

moment conditions. The extent of improvement in fit following from such proposals

is an empirical issue, which we test in an out-of-sample analysis and by virtue of the

diagnostic tests that were used to design the new adapted filtering models. Concrete

examples of proposed new transition equations for ft+1 that allow for deviations from

moment conditions are provided in Section 4.3 and in Section 4.4. Such multi-level

modeling requires the data to be informative enough to identify variation in the

violated moment conditions.

The above approach for time variation in the conditional mean of the time-varying

parameter can be generalized further. Consider a set of K moment conditions gener-

ated under the correct specification of the recurrence equations (4.1),

mt ({ys, fs}s; θ0) := Eθ0 [gt({ys, fs}s) |Ft−1] ,

where gt(·) and mt(·) are known functions of the observed data and time-varying pa-

rameter paths. In the above example of time-varying conditional mean, the choices

reduce to gt({ys, fs}s) := ft+1 and mt({ys, fs}t) := γ(ft, θ0). If this moment condition

is persistently violated in sample, we can make some of the (originally static) hyper-

parameters dynamic to exploit better the information contained in the data. This
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can be done by proposing an alternative filtering equation that has a better match

to its implied moment conditions.

For example, in the leading example of specifying the condition mean of the GAS

model, we have a new functional form

ft+1 := ωt(1− β) + βft + α∇t.

The above parametrization serves the purpose of injecting omitted information into

the filtering recursion by making ωt a dynamic parameter. Two concrete examples

are provided in the next two subsections.

4.3 The tvGAS model

We extend the standard score driven model (see also Creal et al., 2013; Harvey,

2013) to allow for time-variation in latent moments. We propose the following up-

dating recursion,

yt ∼ p(yt; ft)

ft+1 = (1− β)ωt + βft + α I−a
t ∇(yt; ft), a ∈ {0, 1/2, 1}

which we call the tvGAS model given the time-varying intercept parameter ωt. In an

observation driven framework the hyperparameters are modeled by ωt = ωt(y1, . . . , yt−1) ∈
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Ft−1. In order to interpret the role of ωt, assume for now that the intercept parame-

ter ωt = ω would be constant and that the process ft is invertible. The filter can be

written as

ft+1 = ω +
∞∑

i=0

βiαI−a
t−i∇(yt−i; ft−i), (4.3)

and ωt = ω can be interpreted as the long-run mean of ft under correct specification.

On the other hand, if ωt is allowed to vary over time, the representation no longer

continues to hold. In that sense there is no “stationarity” concept available here

as the model itself changes over time. For that reason, the literature refers to “local

stationarity”. Furthermore, note that the extended model with flexible intercept term

is no longer Markovian.

In empirical data we might observe long-lasting persistent deviations from the

long-term means. In order to capture slow changes in the long-term time-varying
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parameter levels, we consider the following flexible specification of long-run levels2

ωt = K−1
t

T∑

s=1

k∗s(t)fs (4.4)

k∗s(t) =





ks(t) if s ≤ t,

0 otherwise

(4.5)

Kt =
T∑

s=1

k∗s(t). (4.6)

We follow Giraitis et al. (2014), suggesting the kernel

ks(t) := K

(
t− s

H

)
, (4.7)

where K(·) denotes a standardized kernel, such as the Gaussian kernel with K(x) =

exp (−x2 /2) /
√
2π. Theoretical results by Giraitis et al. (2014) suggest an optimal

bandwidth choice of H =
√
T .3 4 These choices for weights are illustrated in Figure

4.1 using the Gaussian kernel.

2We have defined the model to have only non-zero weights on innovations from past observations.
Alternatively, one can develop a smoothing algorithm by incorporating information from adjacent
future levels in the filtering equation (4.6) in a two-sided sum.

3An alternative approach of Bauwens et al. (2013) defines the kernel by ks(t) := Kh ( (t− s)/T ),
where Kh(·) = (1/h)K(·/h). They use optimal bandwidths of h = 0.05 for the Gaussian kernel and
h = 0.09 for the Epanechikov kernel. Furthermore, by following the non-parametric approach, the
method of (Hardle, 1990, p.127) can provide the time series confidence bands around time-varying
parameters.

4Note that as opposed to extracting the optimal bandwidth semi-parametrically, the model here
specifies a kernel-driven evolution of the latent deep state parameters.
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0 1000 2000 3000

0.005

0.01

Figure 4.1: Kernel weights as a function of time

Notes: The thick dotted line corresponds to the bandwidth H = T 4/5, while the thin solid line
corresponds to the optimal bandwidth of H =

√
T . The base kernel is Gaussian.

4.3.1 Monte Carlo evidence

The design of our simulation exercise is close to the analysis conducted by Engle

(2002a). We simulate data with deterministic time-varying correlations and estimate

our tvGAS model on this data in order to see how well our model can pick up

the simulated patterns. In particular, we might be concerned about the additional

parameter uncertainty of the tvGAS model overshadowing the benefits of its added

flexibility.

To explore the tradeoff between estimation uncertainty and mis-specification bias,

we parametrize the correlation process as ρt = tanh(ft), where ft+1 = ωt(1 − β) +

0.99 ft + 0.01 εt, where εt ∼ NID(0, 1). Furthermore, the observations are assumed
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to be drawn from a Student’s t(5) distribution. We consider two types of changes in

the long-run correlation levels: single breaks and sinusoidal patterns. Within each

pattern we also vary the magnitude of the structural change to make it more difficult

to extract. In the first class of a single break, we consider both a large break and a

small break. In the second class of simusoidal waves we consider the case of a single

period and four periods. By fixing the time series length to T = 3000, we reflect an

empirical setting to capture over a decade of daily data. In order to capture changes

of parameter uncertainty in the observation equation, we also vary the cross-sectional

dimension n ∈ {2, 100} and report the results over 1000 repeated simulations. Both

GAS and tvGAS specifications are initialized at the true value of the time-varying

parameter.
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Figure 4.2: Steady state (ωt) extraction under deterministic misspecification

Notes: The dark solid line presents the true time-varying steady state pattern; the GAS model is presented by red squares (· · ·� · · · ); the
tvGAS model is presented by light blue circles (− ◦ −). We present the pointwise average of the filtered correlations based on the ML
estimates for time-dimension T = 3000 and cross-sectional dimension n = 100, based on 1000 replications. The dotted bands depict 80%
pointwise confidence-bands across simulations.

147



CHAPTER 4. ADAPTING FILTERING EQUATIONS TO MISSPECIFICATION

Table 4.1 summarizes the results. We are interested in the signal extraction quality

both in terms of the correlation paths and the inferred steady states. We also display

the true and the extracted steady-state parameter paths in Figure 4.2. In terms of

the effective correlation paths, the average mean squared error (MSE) and median

absolute deviation (MAD) of the tvGAS model are found to be fairly similar to the

original GAS model. However, if we want to estimate the long run steady state

correlation as a structural parameter, the gains in terms of the estimated long run

steady state can be large. Furthermore, when we increase the dimensionality and

therefore the information from cross-sectional pooling, we also observe that the signal

extraction quality of both models improves.

We find that the tvGAS model performs best in case of a large single structural

break in the middle of the sample. A smaller magnitude of the structural break

or frequent substantial structural changes in the underlying steady state make the

true data generating more difficult to extract. In more noisy scenarios, performance

of the tvGAS model deteriorates. We put the tvGAS model to the test in such

a hostile environment by also including a high-frequency sinusoidal specification of

the long run steady state. Even though the tvGAS performs relatively better in a

higher dimensional (informationally richer) setting, we do observe that such a process

marks the breaking point of our model – both the correlation paths and the steady

state extraction performance of the tvGAS specification are inferior to the plain

vanilla GAS counterparts. Economically speaking, we would however not expect the
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Table 4.1: Signal extraction results

Notes: Lx denotes the average loss L ∈ {MSE,MAD} with respect to the respective time-varying
parameter x ∈ {ρ, ω}. The steady state paths of the simulated data generating process are
displayed in Figure 4.2. In particular, “Break (big)” corresponds to a DGP where the steady state
correlation switches from 0.2 to 0.4 at midpoint, while “Break (small)” corresponds to a DGP
where the steady state correlation switches from 0.2 to 0.3. Furthermore, “Sine (slow)” represents
a sinusoidal pattern with a single period, while “Sine (fast)” represents a sinusoidal pattern with
four periods.

(a) n = 2

MSEρ MADρ MSEω MADω

Break (big) GAS 0.0726 0.0458 0.1252 0.0718
tvGAS 0.0669 0.0441 0.0725 0.0384

Break (small) GAS 0.0568 0.0375 0.0616 0.0417
tvGAS 0.0540 0.0371 0.0501 0.0341

Sine (slow) GAS 0.0727 0.0484 0.2259 0.1717
tvGAS 0.0736 0.0484 0.1107 0.0840

Sine (fast) GAS 0.0666 0.0498 0.0974 0.0954
tvGAS 0.0798 0.0610 0.1155 0.0982

(b) n = 100

MSEρ MADρ MSEω MADω

Break (big) GAS 0.0288 0.0159 0.1150 0.0746
tvGAS 0.0250 0.0158 0.0439 0.0113

Break (small) GAS 0.0225 0.0141 0.0585 0.0363
tvGAS 0.0214 0.0138 0.0254 0.0101

Sine (slow) GAS 0.0231 0.0151 0.1081 0.1003
tvGAS 0.0230 0.0151 0.0341 0.0259

Sine (fast) GAS 0.0268 0.0181 0.0957 0.0954
tvGAS 0.0271 0.0181 0.0949 0.0857

long-run steady-state to change abruptly from year to year as the average business

cycle is expected to last around five years (see also Diebold and Rudebusch, 1994;

Stock and Watson, 2005).
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4.3.2 Illustration: Bivariate correlation between

UK and Greek equity indices

For our first empirical illustration, we use data of the FTSE 100 and the Athex

Composite index returns to study the time varying correlation between these two mar-

kets. We estimate the model over the period January 1, 2002 to December 31, 2011.

To avoid overfitting, we study the performance from an out of sample perspective,

from January 2, 2012 until June 24, 2014.

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

Figure 4.3: The estimated long run factor variance compared to its filtered counter-
part

Notes: The vertical line depicts the Newey-West long-run variance of the filtered factors ft(yt; θ̂).

We compare this value to its simulated counterpart ft(θ̂), where we have simulated from the fitted
model in Table 4.2. We find that the realized long-run variance lies on the 98.46%-quantile of the
simulated distribution.

We have already seen in Chapter 2 an indication of possible higher order depen-
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dence in extracted correlations on the UK-Greek equity index data. The Nyblom test

for remaining time varying correlations in the residuals of the t(5)-GAS(1,1) model

suggests that a further component to model correlations might be beneficial. As a

further diagnostic check we compare variation in the model-implied correlation fac-

tors against the corresponding data counterpart. First, we compute the Newey-West

long-run variance of filtered factors {ft(yt; θ̂)}.5 Next, given the estimated model

parameters θ̂, we repeatedly simulate time varying parameter paths ft(θ̂) from to

the the standard GAS correlation model. We do this for the fixed sample size to

reflect the finite estimation sample size. Subsequently, we calculate the correspond-

ing Newey-West long-run variance in each simulation just as before. This procedure

finds that the realized long-run variance is located on the simulated 98.46%-quantile

of the simulated long-run variance distribution, reported in Figure 4.3. Therefore, in

our modeling approach, we explore excess variation above and beyond a time-varying

volatilities and correlation t(5)-GAS(1,1) model. According to Engle’s ARCH test,

there does not seem to be substantial heteroskedasticity in the scores, we proceed by

specifying a tvGAS model with time-varying long-run levels.

Giraitis et al. (2014) suggest the optimal bandwidth choice in (4.7) to beH =
√
T .

We visualize the impact of bandwidth choice in Figure 4.4. We observe that under the

alternative bandwidth choice H = T 4/5, the extracted evolution of the latent level ωt

5Given a time-varying parameter path {ft(yt; θ̂)}t=1,...,T , the heteroskedasticity and autocorre-
lation consistent long-run variance of the time-varying parameter proxy is computed by using lag
length 4× (T/100)

2

9 (see e.g. Davidson and MacKinnon, 2004).
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Figure 4.4: The impact of kernel choice on extracted time-varying correlation paths
for fixed dynamic hyperparameters

Notes: We have used the kernel definition of (Giraitis et al., 2014), where the base kernel is
Gaussian.
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Figure 4.5: Comparison of kernel-based law of motion to the random walk intercept
evolution in (4.8)

is much slower, effectively inducing patterns comparable to a plain vanilla GAS(1,1)

model.

Also, we compare the kernel-based law of motion with the stochastic process
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intercept assumption

ωt = ωt−1 + αω (ft−1 − ωt−1) . (4.8)

This random walk specification is labeled as the “tvGAS RW” model. Figure 4.5

shows that the extracted time-varying parameter paths of both specifications are

fairly similar, such that this modeling choice does not substantially affect qualitative

implications of the tvGAS specification in our example.

Table 4.2: Performance comparison in the bivariate case (5 DoF, a=1)

Notes: “tvGAS Kernel” denotes a model for the intercept process {ωt} with kernel-extracted
evolution (4.4). “tvGAS RW” denotes a model for the intercept process {ωt} with a stochastic
process parametrization (4.8). “Giacomini-White statistic” corresponds to the
Giacomini and White (2006) test for superior conditional out of sample predictive ability, using
GAS(1,1) model as the benchmark (critical value at 5% level: 5.99).

GAS(1,1) tvGAS tvGAS RW

ω 0.0126
α 0.0320 0.0289 0.0299
β 0.9734 0.9493 0.9544
αω 0.0148

Log-likelihood In-sample −7004 −7005 −7004
Log-likelihood OOS −1835 −1829 −1829
AIC (Full-sample) 17686 17673 17674
BIC (Full-sample) 17704 17685 17692
# parameters 3 2 3

Reject Const Corr at 5% level Yes Yes No

Giacomini-White statistic 0 8.28 8.19
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Figure 4.6: Comparison with a plain vanilla t(5)-GAS(1,1) model

Notes: The solid vertical line marks the beginning of the out-of-sample environment from January 2, 2012 until June 24, 2014. The
smooth black solid line denotes the time-varying attractor ωt, extracted by a semi-parametric Gaussian kernel with bandwidth H =

√
T .
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Table 4.2 reports the fitted parameter estimates and various measures for model

performance. We notice that the estimated persistence parameter β falls below

0.95. The estimated persistence parameter being close to unity (i.e. approaching the

boundary of the admissible parameter-space) could be attributed to mis-specification

(Diebold, 1986; Jensen and Lange, 2010). Therefore, according to this interpretation,

mis-specification is alleviated.6 Furthermore, a more precise estimate of the currently

prevailing local time-varying parameter level requires less severe corrections by the

score in each updating step because the model formulation embeds the additional

information from recent correlation levels. This has the effect that the value of α

is smaller for the new tvGAS model. In addition, we see that the GAS model ex-

tracts higher correlations in the early sample (from January 2002 to March 2006),

lower correlations during the Great Recession (from December 2007 to June 2009)

and higher correlations out-of-sample(from January 2012 to June 2014), when com-

pared to the tvGAS models. Panel (b) of Figure 4.6 demonstrates the relevance of

such a model compared to a benchmark t(5)-GAS correlation model, especially in an

out-of sample setting. The out-of sample period differs from the in-sample data due

to the European Securities Market Programme, injecting over EUR 200 billion into

bond markets in June 2012, which we expect to have an impact on the whole financial

ecosystem. Even though this information is not explicitly available to the new tvGAS

6It is important to avoid simply overfitting a more complicated model to the data. This can be
achieved either by means of economic intuition or statistical methodology. To address the latter
approach, we conduct out-of-sample analyses and diagnostic tests, verifying that the improvements
are of substance.
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model in the in-sample fitting stage, it quickly adapts to the post-crisis circumstances

to deliver superior forecasts when compared to the plain vanilla GAS(1,1) model.7

4.4 Asymmetry in the volatility news im-

pact curve

While the above example was concerned with dynamic violations of latent con-

ditional moment conditions, more generally, one could also involve unconditional

moment conditions that are explicit functions of the data. An example for such a

mis-specification is the omission of the leverage effect by the GARCH model, i.e. the

observation that negative returns are associated with higher future volatility than

positive returns.

As a starting point for our exercise, consider a dynamic scale model based on the

Student’s t distribution with ν degrees of freedom

yt = exp
(

1

2
ft

)
ut, ut

i.i.d.∼ Tν (0, 1)

One can directly verify that the Student’s t score, being a function of y2t , is symmetric

in yt. Therefore, this plain vanilla GAS(1,1) model generates the following symmetry

7The tvGAS also prevails in a full-sample model fitting procedure.
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restriction

Eθ0
[
log
(
y2t+1

)
(1 [yt < 0]− 1 [yt ≥ 0])

]
= 0. (4.9)

The logarithmic transformation of the data serves three purposes. First, the log-

arithmic transformation of the volatility proxies brings them close to Gaussianity

(Andersen et al., 2007), which makes standard regression-based diagnostic checking

more reliable. Second, we formulate restrictions directly in terms of observable data

rather than in terms of the latent volatility processes. Potentially, measurement error

in volatility can convolute the estimated persistence and therefore alter the extracted

time-varying parameter paths and diagnostics thereof (see also Hansen and Lunde,

2014). Third, given the exponential parametrization of volatility as a function of the

time-varying parameter, a logarithmic transformation of the realized volatility proxy

yields an analytically convenient link between the model and the moment restriction

violations. Engle and Ng (1993) have argued that the above symmetry restriction is

likely to be violated due to the leverage effect in equity markets (Black, 1976). Typi-

cally, diagnostic tests yield a higher impact of negative returns to expected volatility,

i.e. the expectation in (4.9) is positive rather than zero for typical empirical data.

If the data indeed disagrees with the symmetry restriction, we may want to im-

prove upon a symmetric volatility model. We can model deviations from the empirical
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expectation the following mis-specification adapted model

yt = exp
(

1

2
ft

)
ut, ut

i.i.d.∼ Tν (0, 1)

ft+1 = ω(1− β) + βft + (α + α−1 [yt < 0])∇t(yt; ft), (4.10)

which we label as the T-GAS Leverage model. We can directly compute the moment

property (4.9) for the T-GAS Leverage model by

Eθ

[
log
(
y2t+1

)
(1 [yt < 0]− 1 [yt ≥ 0])

]
= α− Eθ [∇t(yt; ft) | yt < 0] (4.11)

to observe that the asymmetry parameter α− in the new transformed recursion (4.10)

captures the moment violation up to a constant of proportionality. In other words,

the T-GAS Leverage model helps to improve upon the misspecification of the original

model in the sense of the moment condition (4.9). Furthermore, by the nature of the

explicit connection of the above moment condition to the newly introduced parameter

α− retains a tractable interpretation as the asymmetry parameter.

While the score of the predictive likelihood still continues to act as the key compo-

nent of the updating recursion, we have further incorporated the salient asymmetry

feature of stock market volatility by adapting the functional form of the volatil-

ity dynamics. Consequently, we prevent the volatility model from being entirely

tied down to the observation density. Furthermore, this example illustrates how the

choice of the relevant moment conditions can play a pivotal role in our inference
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(Gallant and Tauchen, 1996). Note that the testable moment condition (4.9) is for-

mulated in terms of a discontinuous function of the data. Therefore, the adjusted

updating recursion inherits the discontinuity around zero. This complicates numeri-

cal computations and the asymptotic analysis of the new model, which may not be

considered desirable by various researchers.

We illustrate the importance of this modeling choice based on IBM returns of

between January 1, 2000 and December 31, 2014. Table 4.3 reports different perfor-

mance criteria, while Figure 4.7 depicts the extracted volatility paths. We see that the

log-likelihood of a GJR model of Glosten et al. (1993) with a fat-tailed observation

density is on par with the corresponding values of GAS models based on Students T

and skewed T densities.8

It may seem from the above comparison of existing volatility models that there is

little benefit in adding asymmetry features to the volatility filters. However, our T-

GAS Leverage model enables us to have a closer look. When comparing the leverage-

adjusted T-GAS model to a benchmark GJR-GARCH model, we see that as the

latter uses squared returns as inputs, large outliers come with single spikes in ex-

tracted volatilities. On the other hand, the transformed T-GAS Leverage recursion

outperforms a plain vanilla T-GAS model by incorporating information from the

above moment condition. For instance, in late 2002, after the burst of the tech bub-

ble, the IBM stock return was positive and large in absolute value. While the plain

8The skewed T distribution is implemented by restricting the Generalized Hyperbolic
GH(µ, γ,−ν/2, ν, 0), where γ denotes the skewness parameter.
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Figure 4.7: IBM volatility models

vanilla TGAS and the TGAS Leverage specifications remain robust to this outlier,

the GJR GARCH model overreacts due to its quadratic news impact curve. Further-
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more, we also fit a volatility model based on a skewed T distribution, which allows

for asymmetry in the news impact curve only if there is skewness in the observation

density. However, in this setting as the skewness parameter is insignificant such that

the observation density is estimated to be symmetric, and therefore the extracted

paths and performance criteria are comparable to a symmetric Student’s t GAS spec-

ification. Also note that our leverage specification, derived by (4.11), critically makes

use of the symmetry assumption of the observation density.

In order to disentangle the fat tails, skewness and leverage channels in the news

impact curve, we next turn to diagnostic tests. Table 4.3 also reports the sign statis-

tic of Engle and Ng (1993) as a measure of asymmetry in the magnitude of filtered

residuals. We observe a slight improvement of the TGAS Leverage model over the

TGAS specification in terms of diagnostic performance. Summing up, the T-GAS

Leverage specification outperforms other models both in terms of density forecasting

and in terms of model specification tests.
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Table 4.3: Volatility models and leverage

T-GAS SkewT-GAS GJR T-GAS Leverage

ω 0.839 0.837 0.026 0.764
(0.245) (0.244) (0.006) (0.210)

β 0.990 0.990 0.917 0.9903
(0.004) (0.004) (0.009) (0.004)

α 0.067 0.067 0.033 0.032
(0.008) (0.008) (0.009) (0.010)

α− 0.079 0.050
(0.015) (0.011)

ν 5.0647 5.063 5.329 5.056
(0.3805) (0.353) (0.406) (0.375)

Skewness 0.004
(0.025)

LogL −6473 −6473 −6477 −6464
AIC 12954 12956 12963 12938
BIC 12979 12987 12994 12969
numParam 4 5 5 5

Sign statistic 6.263 6.209 1.628 4.372
p-value 0.099 0.102 0.653 0.224

Notes: The LM-type sign statistic of Engle and Ng (1993) is implemented by a regression

log

(
yt
σt

)2

= γ0 + γ11 [yt−1 < 0] + γ21 [yt−1 < 0] yt−1 + γ31 [yt−1 ≥ 0] yt−1

to test the restriction γ1 = γ2 = γ3 = 0.
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4.5 Conclusion

We have extended available filtering models that have fallen short in describing the

data. In particular, if a model has failed some of the diagnostic checks, we explicitly

incorporate the missing features into a new, better specified model. The applications

have demonstrated usefulness of the approach, especially for forecasting purposes.

There remain further extensions that we have not yet examined. First, we have

not developed asymptotic analysis of the novel filtering models. While in the linear

GARCH case, explicit results are available in the literature, we suspect that for gen-

eral non-linear models, high-level assumptions may need to be maintained. Second,

we have sidestepped issues of overidentification to account for several contempora-

neous sources of mis-specification. Third, we have focused on the filtering problem.

Extensions to analogous smoothing algorithms can as well be constructed. Forward-

looking data descriptions could be accommodated by applying two-sided temporal

kernels in place of the one-sided kernels used in this chapter. Finally, there is ample

room for further applications. For example, the proposed filtering method could be

used equally well to capture possible time-varying persistence in economic data.
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Chapter 5

Predictive Systems and Dynamic

Spillover Analysis

Abstract. We propose dynamic vector autoregressive (VAR) models for the purpose of measuring

systemic risk. Following the spillover decomposition framework of Diebold and Yilmaz (2009), we

compare our dynamic empirical models to the prevailing rolling window approach. Our results

suggest that the new model has superior performance both in terms of the in-sample predictive

likelihood and out-of-sample loss criteria. Furthermore, our approach has the feature that the

incorporated realized variance measures allow for more precise models for second moments and

allows us to pin down variance decompositions that underlie the spillover measurement framework

more precisely. We illustrate our approach in the context of equity return spillovers across listed US

companies and volatility spillovers across international stock market indices.
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5.1 Introduction

The transmission of shocks is an object of empirical interest for understanding and

measuring financial crises. If movements in a single securities market predict further

ripple effects or uncertainty in other international exchanges, this can have impli-

cations for policy interventions, economic equilibrium models and portfolio choice

(Ahern, 2014; Aı̈t-Sahalia and Hurd, 2014; Kodres and Pritsker, 2002). In this chap-

ter we measure time-varying heterogeneous spillovers in equity markets. We introduce

new models, which, by matching salient features of stock market data, provide a more

credible description of systemic risks when compared with available approaches in the

literature.

Recently, research on the sources and the measurement of systemic risks has

emerged rapidly, see Bisias et al. (2012) for an overview. Analyzing spill-over ex-

ternalities has become increasingly relevant in the face of policy interventions that

involve wide-scale asset purchases. By disentangling the firm-specific heterogeneity of

contagion, this may enable us to identify systemically important sources of spillovers.

We base our analysis on Diebold and Yılmaz (2014) who propose a network in-

terpretation of vector autoregression (VAR) based variance decompositions. Vector

autoregressions have been used before for the analysis of systemic risks: for instance

Billio et al. (2012) monitor unconditional Granger causalities in equity returns and

Billio et al. (2012) investigate Granger causalities in sovereign credit default spreads.

However, mostly static VAR-based models are applied in the literature, and in order
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to pick up changes in systemic risks, previous papers have mainly relied upon a rolling

window estimation of a static model. When studying contagion among financial as-

sets, a key issue to address is the changing nature of the economic data generating

process (Timmermann, 2008). For instance, Bekaert et al. (2014) find strong crisis-

related contagion effects in global equity markets. As we will see, a rolling window

approach to parameter instability comes with the caveat of high parameter uncer-

tainty and suffers from poor out-of sample predictive performance.

An improved model can provide more accurate descriptions of the data. We

depart from the widespread rolling window approach by implementing an autoregres-

sive observation driven recursion for the time-varying parameters of the underlying

VAR model, which implies a robustified exponential weighting of the innovations and

lagged dependent variables. Exponential weighting (EWMA) of the innovation is ex-

pected to provide from a forecasting perspective optimal weights in the presence of

small continuous structural instabilities (Pesaran, Pick, and Pranovich, 2013). Fur-

thermore, we expect substantial changes in the extracted spillover indices, as the

rolling window approach often exhibits discontinuities, while exponential weighting

of the innovations in our model will more gradually detect the inferred changes in

spillover patterns.

Conditional models in the literature mostly address a contemporaneous factor

structure to capture asset commonality across different firms (see also Lucas et al.,

2013). Such a methodology indicates systemic risks in instances where all assets move
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more strongly together. On the other hand, we aim to capture ‘domino-effects’ that

could be symptoms of fire-sales and downward spirals in asset prices, which display

lead-lag relationships. While maintaining the possibility of a contemporaneous factor

structure, we incorporate further heterogeneity into the approximating model for

identifying the systemically important sources of spillovers. Therefore our proposed

methodology addresses a different, yet complementary, characteristic of systemic risks

and financial crises.

One benefit of our approach is that we are able to deal with unbalanced panels of

data. Therefore we avoid temporal aggregation of the data to economically uninter-

esting and artificially low frequencies. Missing observations necessarily occur in our

international dataset as banking holidays are not synchronized across different coun-

tries. Moreover, handling missing observations may become particularly relevant in

face of financial crises, as corporate default events or asynchronous trading holidays

may lead to missing observations or exits from the available dataset.

We illustrate the alternative spillover methodologies in two examples. First, we

study return spillovers among US large cap stocks in a timeframe between January

2001 and July 2014. Our empirical results suggest that in times of crises, the rel-

ative value of our systemic risk index goes above and beyond the strength of the

factor structure as implied by the system correlation. While the financial assets were

systemically central during the times of the 2008 financial crisis, we find that the

technology stocks are the source of spill-overs in the early 2000’s to capture the burst
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of the internet bubble. This illustrates how different economic sectors may play a key

role in crisis propagation in different historical episodes. Our spillover methodology

helps uncover these time-varying patterns.

Second, we study volatility spillovers across global equity markets in a timeframe

between June 2002 and June 2015. We find that US equity shocks lead the global

markets. Furthermore, developed open economies are characterized by both giving

shocks to and receiving shocks from other markets. Emerging markets on the other

hand display a strong idiosyncratic component, being less intertwined with global

markets. The important distinction between both examples is the estimated smooth-

ness of the spillover patterns. While a rolling regression approach exogenously fixes

the window length, the filtering models estimate the speed of information accumula-

tion. As volatility proxies are more persistent than returns, we also find the spillover

measures to behave more smoothly in the volatility spillover example.

This paper is organized as follows. Section 5.2 introduces the concept of spillover

networks and proposes the dynamic vector autoregressive model. Sections 5.3 and

5.4 discuss the forecasting performances and spillover implications of the proposed

method compared to the existing benchmarks in the context of return and volatility

models, respectively. Finally, Section 5.5 concludes.
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5.2 Dynamic spillover models

5.2.1 Variance decomposition networks

Let yt denote the n-dimensional asset universe under investigation and consider

an MA(∞) representation

yt =
∞∑

i=0

Ahεt−i, εt
i.i.d.∼ N(0,Σ).

Let dHij denote the fraction of asset i’s H-step variance explained due to asset j. The

generalized variance decomposition of Pesaran and Shin (1998) gives the following

analytic expression

dHij =
σ−1
jj

∑H−1
h=0

(
e⊤i AhΣej

)2
∑H−1

h=0 e
⊤
i AhΣA

⊤
h ei

, i, j = 1, . . . , n, (5.1)

where ei denotes the i-th unit vector.1 In practice we approximate the MA(∞)-

representation by a finite order VAR(p) process. For instance, if a VAR(1) system

is sufficient to describe the joint dynamics, then we have Ah = Φh, where Φ is the

autoregressive matrix. We now describe the Diebold and Yılmaz (2014) network in-

terpretation of variance decompositions, to explore the inferred system connectedness

1This variance decomposition has the property that
∑
j d

H
ij 6= 1, so in practice we normalize

dij over the columns j. An alternative variance decomposition is via the Cholesky decomposi-
tion, which delivers very similar relative systemic risk rankings (see also Diebold and Yılmaz, 2014;
Klößner and Wagner, 2014).
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properties.

5.2.2 Descriptive spillover measures

A key descriptive measure within the Diebold and Yılmaz (2014) framework is

the spillover index

SI =

∑n
i=1 Contribution To Othersi∑n

i=1 Contribution Including Owni
,

Contribution To Othersi = 100×
∑

k 6=i
dHki,

Contribution Including Owni = 100×
n∑

k=1

dHki,

Contribution From Othersi = 100×
∑

k 6=i
dHik.

Note that the spillover table has the property
∑n

k=1 d
H
ik = 1 as we have row-normalized

the spill-over measures. Furthermore, to disentangle the directions of shocks, define

the ‘Net’ connectedness

NETi = Contribution To Othersi − Contribution From Othersi,

with the interpretation that a positive value for NETi is an indication for leading

assets in the asset universe. Next, we further study the heterogeneous nature of

spillovers. In order to pin down the systemically important assets, define the spillover
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centrality

Cspillover,i = 100× Contribution To Othersi∑
k Contribution To Othersk

.

While the above definitions are straightforward in a static setting, it is unclear how

the variance decompositions would behave when used for describing different dynamic

models. Furthermore, the importance of incorporating dynamics into the systemic

risk descriptions cannot be overemphasized, or as Diebold and Yılmaz (2014) phrase

it: “Given this background of financial market evolution and turbulence, it seems

unlikely that any single fixed-parameter model would apply over the entire sample.”

As conclusions regarding the variance decomposition networks may crucially hinge

upon the dynamic approximating model for the data, we next explore sufficiently

general and flexible multivariate models to represent the data generating process. In

particular, we postulate observation-driven dynamics for the underlying VAR param-

eters as a convenient modeling tool in such a high-dimensional and computationally

demanding setting.
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5.2.3 Multivariate location dynamics

Consider the following observation driven model for the asset returns

yt = Φtyt−1 + ut, ut ∼ N(0,Σt) (5.2)

⇔ yt = Xtft + ut, Xt = In ⊗ y⊤t−1, ft = vec
(
Φ⊤
t

)

Σt = DtRtDt, Dt = diag ({σi,t}i=1,...,n)

ft+1 = ω + βft + αst (5.3)

st =
(
X⊤
t Σ

−1
t Xt

)+
X⊤
t Σ

−1
t diag

(
w(yt)

)
(yt −Xtft)

=
1

y⊤t−1yt−1

(
diag

(
w(yt)

)
⊗ yt−1

) (
yt −

(
In ⊗ y⊤t−1

)
ft
)

(5.4)

w(yt) =

{(
ν + 3

ν

)
ν + 1

ν − 2 + (ut,i/σt,i)2

}

i=1,...,n

, (5.5)

where the innovation st is motivated by a Student’s t score (Creal et al., 2013, 2014).

Furthermore, the variance matrix Σt is decomposed into a correlation matrix Rt and a

diagonal matrix of volatilities Dt as Σt = DtRtDt. The model for the variance matrix

Σt depends on the application at hand and data availability. Concrete examples are

provided in Sections 5.3 and 5.4.

Notice that the score based updating recursion for the full system is in the Gaus-

sian case equivalent to updating the dynamic slope parameters equation-by-equation.2

By updating the dynamic VAR matrix in an equation-by-equation manner, we treat

asynchronous outliers separately across different assets. However, in a full-system esti-

2Note that the equation-by-equation updating is due to the block-diagonal form of
(
X⊤

t Σ
−1
t Xt

)+
.
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mation under the multivariate Student’s t distribution, the variance matrix Σt would

enter the updating equations via the outlier-robust weighting function w(yt). As

systemic risk applications typically require estimating medium- to high-dimensional

systems to model financial data, we choose to sacrifice the potential informational

gain of a full-information estimation against the benefits of robustness of a limited-

information approach to outliers and model mis-specification.

We require the admittedly restrictive Gaussianity assumption in the observation

equation (5.2) in order to maintain the closed form variance decomposition in (5.1).

While variance decompositions for non-linear non-Gaussian systems can be accom-

modated by the generalized impulse response functions of Koop et al. (1996), the

Gaussianity assumption substantially reduces the required numerical effort for eval-

uating spillover risks. Furthermore, the Gaussianity may facilitate further theoret-

ical research on the estimation of the model to justify a Quasi Maximum Likeli-

hood interpretation and on the validity of a two-step estimation procedure (see e.g.

Rahbek and Pedersen, 2013).

For the purposes of gaining further intuition, consider the dynamic regression

model that is inherent to estimating the vector autoregression in an equation-by-

equation manner. In the special case of Xt ≡ 1, w(yt) ≡ 1, ω ≡ 0 and β ≡ 1 the

EWMA recursion can be recovered. We estimate the model parameters by maximum

likelihood. Note that in a n-dimensional system, the intercept parameter ω collects

n2 parameters which can become large quickly even for moderately sized (n > 10)
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systems. Therefore, we reduce the required numerical effort of fitting the model to

data by targeting the intercept parameters in ω of the updating recursion (5.3) by

simple ordinary least squares estimation of a static VAR model as the first stage

of a location targeting procedure, which greatly reduces the number of numerically

optimized parameters. The signal and persistence parameters α and β are scalars in

our specifications to enforce parsimony in our relatively large nonlinear model.

A benefit of the model is that by letting w(yt) in the above definitions follow the

score driven mechanics of Creal et al. (2013, 2014); Harvey and Luati (2014) based

on the Student’s t distribution, the model inferred time-varying parameter paths are

resilient against contamination from aberrant observations. In our applications on

equity markets we find evidence for excess kurtosis and we ensure that the filter is

robust in the sense of Calvet et al. (2014) by using a weighting for the time varying

parameter dynamics based on Student’s t(5) scores.

5.3 Return spillovers

5.3.1 Multivariate scale dynamics

The location model in (5.2) – (5.5) left the dynamics of conditional covariance ma-

trices unspecified. Depending on the choice of the asset universe and the observation

frequency, we may consider different models for higher moments. Time variation in

conditional covariances is a well-known stylized fact in equity markets, so we proceed
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with modeling higher moments as well.

Neglecting time-varying volatilities in a vector autoregression can have several

undesirable effects: observations belonging to a high-volatility regime are overem-

phasized; spuriously generated time-varying parameters emerge (Cogley and Sargent,

2005; Sims, 2001); and there is an upward bias of the estimated contagion effects

(Forbes and Rigobon, 2002). Therefore we account for conditional heteroskedastic-

ity by employing volatility clustering models. Accounting for heteroskedasticity has

the additional advantage that a precise covariance measure helps to pin down the

evolution of the long-run spectrum, and therefore inference regarding variance de-

compositions is expected to become more reliable.

Recent advances in the volatility forecasting literature emphasize the benefits of

exploiting intraday data to obtain more precise volatility estimates. We treat the

latent covariance matrices as partially measured from daily returns and from high-

frequency data, building upon robustified innovations from the scalar BEKK model

of Engle and Kroner (1995b) and the multivariate high-frequency-based volatility

(HEAVY) model of Shephard et al. (2012), respectively. We specify the transition

dynamics by

Σt+1 = (1− βσ)Σ + βσΣt + ασ1w
σ
t s

σ
t,1 + ασ2w

σ
t s

σ
t,2

sσt,1 = utu
⊤
t − Σt, sσt,2 = γσRKt − Σt

wσt =
ν + n

ν − 2 + u⊤t Σ
−1
t ut

,
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where RKt denotes the realized kernel at time t (see also Barndorff-Nielsen et al.,

2008).3 The role of γσ is to capture the omission of overnight returns in the realized

volatility calculations and we therefore expect to obtain an estimate larger than unity.

This is where our model slightly deviates from pre-existing volatility models with

realized proxies. Unlike the pre-existing models, which entirely focus on volatility

modeling, the object of immediate interest in this chapter is the dynamics in the

return equation. As the high information content in the measurement equation for

realized proxies would inadvertently dominate the less informative return equation,

we only incorporate the return equation directly into the statistical loss function

for estimating the model parameters. We further reduce the number of numerically

optimized parameters by tying the long run volatility level to the time series average

of the high-frequency proxy, i.e. Σ̂ = (1/T )
∑T

t=1 γ
σRKt.

5.3.2 Statistical evaluation of alternative VAR

models

As the economically interesting near-term variance decompositions depend on

the conditional forecasting ability over a short horizon, we expect a more accurate

dynamic model also to deliver more precise descriptions of the inferred sources of

spillovers. We apply our return spillover model to the universe of major US companies

3The high-frequency data is extracted from the TAQ database of the Wharton Research Data
Services (WRDS). I would like to thank Anne Opschoor for providing the realized kernel data.
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listed in Table 5.9 of Appendix 5.A. The time frame of our study spans the period

between January 2, 2001 and July 31, 2014.

A static VAR system has many parameters to be estimated. The problem is

possibly even aggravated in our present dynamic setting. In our context of modeling

international equity markets, we inherently quantify the existence and degree of return

predictability (for an overview, see also Timmermann, 2008; Welch and Goyal, 2008).

As a high degree of estimation uncertainty of many parameters may harm the out-

of-sample fit, we also explore the potential benefits of regularized estimators as a

robustness check.

In order to reduce estimation uncertainty in our model, we investigate the im-

pact of penalized estimation of the steady-state ω. The steady state estimate of

the system can be obtained from the corresponding static model. By further pe-

nalizing the static model, we are able to regularize the steady state estimates. Our

main workhorse is the adaptive LASSO procedure of Zou (2006).4 By downweighting

the penalty attached to large coefficients, the adaptive LASSO approach has sev-

eral advantages over a basic LASSO regression. First, the procedure has improved

model selection oracle properties under milder conditions than a plain vanilla LASSO

4In the first targeting step of the estimation procedure, we replace the least squares estimation
of the intercept with a LASSO estimation routine of the intercept. The adaptive LASSO estimator
is defined as the minimizer of the following optimization problem

min
βi

T−1∑

t=1

(
yt+1,i − y⊤t βi

)
+ λ

n∑

p=1

1
(
β̂i,p

)2 |βi,p| ,

where β̂i is typically the OLS estimate corresponding to a constant coefficient model.
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procedure. Second, the optimization problem is convex, and its global minimizer

can be efficiently implemented.5 Third, the adaptive LASSO has delivered solid

performance across various empirical applications (see e.g. Callot and Kock, 2014;

Hautsch, Schaumburg, and Schienle, 2014).

For the static VAR model, we adopt the approach of Diebold and Yilmaz (2009)

to recursively estimate rolling window parameters based on only a subset of recent

data and then subsequently forecast from the static model based on the current

parameters. On the contrary, our dynamic model in equations (5.2) – (5.5) uses the

entire in-sample data and the changes in the predictive dynamics are already built

into the model via the updating recursion for the time-varying VAR parameters ft.

In order to gain insight into the sources of performance discrepancies, we study the

different models across the cross-sectional dimension and across time series dimension

in Figures 5.1 and 5.2, respectively. We see that a short rolling window of 100

days (from Diebold and Yılmaz, 2014) has the best performance across all models in

capturing the initial conditions. Moreover, the improved performance of the rolling

window model at backcasting initial values is reassuring in the sense that there is

sufficient information regarding the time variation in the data. However, across the

full sample, we find that a longer estimation window length of 200 days improves the

in-sample performance of a 100-days rolling window model.

5We make use of the Fortran implementation within the Model Selection Toolbox, available
at https://github.com/aboisbunon/mst (accessed on April 30, 2014). Following the suggestion of
Boisbunon et al. (2014), the penalty parameter λ is chosen to minimize the unbiased loss estimator

δ0(βi) :=
∑T−1

t=1 (yt+1,i − y⊤t βi)
2 + (2

∑n
p=1 ‖βi,p‖0 − T − 1)× (T − 1)−1

∑T−1

t=1 (yt+1,i − y⊤t β̂i)
2.
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(c) Negative QLikl

 
Rolling window length: 100
Rolling window length: 200
TvpVAR HEAVY; c=OLS
TvpVAR HEAVY; c=adaLasso;IC=gcv

(d) Legend

Figure 5.1: Relative forecasting performance comparison across specific assets

Notes: The solid lines depict the in-sample fit, while the dotted lines depict the out-of-sample fit.

Panels (a) and (b) report
(∑T

s=1 ls,Alternative

)
/
(∑T

s=1 ls,Benchmark

)
with ls ∈ {MSFEs,MAFEs},

while panel (c) reports (1/T )
∑T
s=1 (ls,Alternative − ls,Benchmark) with ls = −QLikls.

One might argue that the complex score-driven updating dynamics might over-

parametrize the fit to the data, and we therefore additionally conduct an out-of-

sample forecasting comparison. The out of sample forecast comparison begins with

January 2, 2008. Such a choice serves two purposes. First, the critical litmus test

of a systemic risk model lies in its predictive ability during the recent financial cri-

sis. Second, we aim to remain conservative regarding the performance of our newly
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Rolling window length: 100
Rolling window length: 200
TvpVAR HEAVY; c=OLS
TvpVAR HEAVY; c=adaLasso;IC=gcv

(d) Legend

Figure 5.2: Relative forecasting performance comparison across time

Notes: The start of the out-of-sample evaluation period on January 1, 2008 is depicted by a

horizontal line. Panels (a) and (b) report
(∑t

s=1 ls,Alternative

)
/
(∑t

s=1 ls,Benchmark

)
with

ls ∈ {MSFEs,MAFEs}, while panel (c) reports
∑t
s=1 (ls,Alternative − ls,Benchmark) with

ls = −QLikls.

introduced filtering model. By opting for a relatively short in-sample period, we po-

tentially harm our parametric filtering model due to potential model instabilities and

the increased parameter uncertainty.

One clear stylized fact that emerges is that the filtering models outperform all

rolling window competitors, even in an out-of-sample context as documented by the

pairwise forecasting comparisons in Table 5.1. Furthermore, we explore the effects of
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a LASSO regularization of the steady state parameters. While the in-sample fit is

slightly impaired by the penalized estimation, we do find rather modest benefits in the

out of sample context. Summing up, we find that estimating the exponential decay

of temporally weighted innovations entails sizable forecasting gains when compared

to a rolling-window procedure.

Pairwise forecast comparisons in Table 5.1 reveal that all of the comparisons

turn out statistically significant, which is perhaps not surprising due to the high-

dimensional nature of our setting. It is therefore important to note that in terms

of relative mean squared forecast errors (MSFE) and relative mean absolute forecast

errors (MAFE), the score based filtering procedure outperforms the rolling window

benchmark by ten percentage points.6

6The loss functions at time t for model i are defined as follows

MSFEt,i =
(
yt,i − y⊤t−1ft,i

)2

MAFEt,i =
∣∣yt,i − y⊤t−1ft,i

∣∣

QLiklt,i =
1

2

[
log
(
σ2
t,i

)
+

(
yt,i − y⊤t−1ft,i

σt,i

)2
]
.
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Table 5.1: Pairwise Giacomini-White predictive comparisons

Notes: Benchmark models are depicted in columns, while the alternative forecasting competitors are reported in rows. The
non-parenthesized entries report differences in losses between benchmark and competitor models. The parenthesized p-values correspond
to that of a formal forecasting comparison test of Giacomini and White (2006).

Rolling window length: 100 Rolling window length: 200 TvpVAR HEAVY; c=OLS
negQLIKL MSFE MAFE negQLIKL MSFE MAFE negQLIKL MSFE MAFE

Rolling window length: 200 −695.270∗ −11890.711∗ −1907.933∗

(P-value) (0.001) (0.000) (0.000)
TvpVAR HEAVY; c=OLS −4311.715∗ −21546.419∗ −3440.667∗ −3616.445∗ −9655.708∗ −1532.734∗

(P-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TvpVAR HEAVY; c=adaLASSO −4410.571∗ −22170.034∗ −3538.016∗ −3715.301∗ −10279.323∗ −1630.083∗ −98.856∗ −623.615∗ −97.349∗

(P-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.029) (0.004)
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5.3.3 Spillover implications of alternative VAR

models

The spillover plots and tables of Diebold and Yılmaz (2014) visualize the variance

decompositions dHkj in (5.1). At every point in time, we compute the instantaneous

variance decompositions from the time-varying location and scale parameters of the

instantaneous VAR model at time t.7 The purpose of the spillover decomposition

framework is to quantify spillover risks in a timely fashion. We therefore measure

spillovers based on daily data, refraining from time-aggregation to lower frequencies.8

The horizon H for the variance decomposition in (5.1) is chosen to reflect the imme-

diate timespan of the Basel III framework for short term risk reporting over the next

ten business days (H = 10).

Table 5.2 reports the parameter estimates for alternative filtering models, high-

lighting the high degree of persistence in the time-varying parameters. One potential

issue that may arise in practice is that for the impulse response functions to be well

behaved for any arbitrary (possibly infinite) horizon H, the instantaneous VARs need

to be stationary. However, we find mean reversion in the estimated dynamic autore-

gressive matrix. Much of the variation is explained by the own autoregressive lag,

7Reporting instantaneous variance decompositions provides an alternative to time consuming
simulation based techniques under a high persistence assumption (see also Giraitis et al., 2014).
However, we recognize that the omittance of time-varying parameter mean-reversion may overstate
changes in spillover measures.

8The financial connectedness homepage http://financialconnectedness.org gives a comprehensive
overview of various identification-related robustness checks.
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Table 5.2: Hyperparameter estimates of the return spillover model

Notes: Estimates of the time-varying VAR model. The long run autoregressive matrix of model
with “c=OLS” is estimated by OLS, while the long run autoregressive matrix of model with
“c=adaLASSO” is estimated by adaptive LASSO. Standard errors are in parentheses.

TvpVAR HEAVY TvpVAR HEAVY
c=OLS c=adaLASSO

α 0.0019 0.0019
(0.0028) (0.0074)

β 0.8203 0.8419
(0.2059) (0.2677)

γσ 1.3651 1.3757
(0.0559) (0.0582)

ασ1 0.0195 0.0194
(0.0037) (0.0044)

ασ2 0.0994 0.0996
(0.0204) (0.0212)

βσ 0.9892 0.9900
(0.0043) (0.0042)

QLikl −23, 256 −23, 277

facilitating diagonal dominance of the autoregressive matrix, such that the VARs in-

deed turn out to be stationary at every single point in time, see also Figure 5.3.9

Moreover, the economic interest in our applications lies in a short risk horizon H,

such that the asymptotic explosiveness potential of a non-stationary VAR is of little

practical importance over a short horizon.

The unconditional descriptions in Tables 5.4 and 5.3 indicate that JP Morgan

Chase and Alcoa are identified as the most central assets in terms of their spillover

centrality. However, time variation in the spillover centrality of both of these assets

is of a different nature: while Alcoa is an industry leader at the source of the supply

9If in further applications of our model the instantaneous VAR turns out to be non-stationary, we
advise the practitioner to adopt a regularized LASSO-VAR as the off-diagonal zero coefficients effec-
tively enforce lower eigenvalues of the autoregressive matrix. Furthermore, explicit parametrizations
to enforce stationarity are described by Giraitis et al. (2014).
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Figure 5.3: System and equation-by-equation instantaneous absolute eigenvalues of
the autoregressive matrix in a TvpVAR model

Table 5.3: Unconditional return spillover centralities, over a horizon of 10 days

Notes: ’To’ column corresponds to out-degree and ’From’ corresponds to in-degree of the variance
decomposition network.

Spillover To From Net
Centrality (most influential) (most vulnerable)

AA 17.6 209.0 56.3 152.6
AXP 14.5 172.1 69.9 102.1
BA 5.8 69.3 77.8 −8.5
CAT 8.3 97.9 77.7 20.2
GE 8.2 96.9 81.1 15.8
HD 6.2 74.0 76.9 −2.9
HON 7.7 91.8 80.2 11.7
IBM 2.9 34.1 86.5 −52.3
JPM 17.1 203.2 58.6 144.6
KO 1.2 14.3 89.4 −75.1
MCD 1.5 17.8 82.0 −64.3
PFE 2.7 32.5 82.7 −50.1
PG 1.0 12.2 91.2 −79.0
WMT 1.7 19.7 88.3 −68.6
XOM 3.5 41.6 87.8 −46.2

chain, spillover impact of JP Morgan is focused around the financial crisis. We next

explore further conditional spillover properties of the different models across different

assets.
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Table 5.4: Unconditional return spillover table, over a horizon of 10 days

A
A

A
X
P

B
A

C
A
T

G
E

H
D

H
O
N

IB
M

JP
M

K
O

M
C
D

P
F
E

P
G

W
M
T

X
O
M

From

AA 43.7 9.5 4.3 8.1 5.6 3.4 5.7 1.9 10.8 0.6 0.9 1.6 0.5 0.7 2.8 56.3
AXP 12.6 30.1 4.0 6.4 7.2 4.6 5.3 2.1 20.6 0.6 1.0 1.8 0.6 1.0 2.1 69.9
BA 16.0 11.3 22.2 7.4 6.5 4.5 9.4 2.0 11.8 0.8 1.3 2.0 0.7 1.2 2.9 77.8
CAT 19.7 11.7 4.8 22.3 6.6 4.4 7.5 2.2 13.2 0.7 0.9 1.7 0.5 1.0 2.8 77.7
GE 14.5 13.9 4.5 7.0 18.9 4.8 7.0 2.7 18.9 0.7 1.0 2.1 0.6 1.1 2.2 81.1
HD 12.2 12.7 4.4 6.6 6.8 23.1 6.2 2.6 16.0 0.9 1.4 1.8 0.7 2.5 2.1 76.9
HON 16.1 11.3 7.1 8.7 7.7 4.8 19.8 2.9 13.8 0.8 1.0 1.7 0.6 1.1 2.6 80.2
IBM 15.0 12.4 4.3 7.0 8.1 5.5 7.9 13.5 17.4 0.9 1.2 1.9 0.7 1.4 2.7 86.5
JPM 10.7 15.2 3.1 5.4 7.2 4.3 4.8 2.2 41.4 0.5 0.7 1.5 0.5 0.8 1.7 58.6
KO 15.5 12.3 5.6 7.1 6.5 6.1 6.9 2.7 12.9 10.6 1.8 3.6 2.2 1.9 4.5 89.4
MCD 14.4 12.1 5.8 6.3 6.4 6.3 5.9 2.5 12.4 1.2 18.0 2.5 1.1 1.9 3.2 82.0
PFE 14.9 12.7 5.0 6.4 7.4 4.5 5.6 2.2 14.2 1.3 1.4 17.3 1.3 1.7 4.1 82.7
PG 14.5 13.1 5.5 6.4 7.2 5.5 6.2 2.6 14.1 2.7 1.9 4.2 8.8 2.2 5.0 91.2
WMT 11.6 12.2 5.3 6.6 7.3 11.0 6.7 3.1 14.4 1.2 1.9 3.0 1.2 11.7 3.0 88.3
XOM 21.2 11.8 5.6 8.5 6.3 4.2 6.7 2.6 12.7 1.3 1.4 3.2 1.2 1.3 12.2 87.8

To 209.0 172.1 69.3 97.9 96.9 74.0 91.8 34.1 203.2 14.3 17.8 32.5 12.2 19.7 41.6 1186.5
CiO 252.6 202.1 91.5 120.2 115.8 97.1 111.7 47.7 244.6 24.9 35.7 49.9 21.0 31.4 53.8 1500.0

Notes: Abbreviations: To , Contribution To Others; From , Contribution from Others; CiO , Contribution Including Own.
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Rolling window length: 100

Rolling window length: 200

TvpVAR HEAVY; c=OLS

TvpVAR HEAVY; c=adaLasso;IC=gcv

Avg System Correlation

Figure 5.4: Transformed spillover index time series

Notes: In order to make the systemic risk indices comparable, we transformed the series to have mean zero and standard deviation one.
The colored lines correspond to standardnormalized spillover indices of competing models, see also panel (d) of Figure 5.6. In particular,
the red line corresponds to 100-day rolling window estimation, the green line corresponds to a 200-day rolling window estimation, the light
blue line corresponds to the TvpVAR model, and the purple line corresponds to the TvpVAR model with LASSO-regularized estimation.
The black dotted line depicts the dynamic equicorrelation among equity returns, see also Chapter 3.
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Our approximating VAR model captures time-variation in the return spillover in-

dex. Interestingly, relative time-variation in the spillover indices coincides with the

relative time-variation in correlation levels of a simple equicorrelation model. The

Pearson correlation coefficient between the spillover index of a TvpVAR model and

the dynamic equicorrelation is 0.89. This is displayed in Figure 5.4. Our obser-

vation that spillover measures and correlations move together addresses a common

methodological concern within systemic risk measurement: by not modeling the mean

equation and merely using covariance matrices to make statements regarding finan-

cial stability, sequential domino effects might mistakenly be attributed to coinciding

contemporaneous comovement patterns. Even though sequential externalities and the

contemporaneous comovement may have distinct policy implications, it is reassuring

to observe the close empirical similarity of both channels.

To gain insight into the dynamic nature of the individual spillover sources, we

study the individual contributions to spillover measures. Comparing the implications

alternative modeling frameworks for all individual assets in Figure 5.9 of Appendix

5.B, we find the filtering models adapt more quickly to the changing financial condi-

tions, while the rolling window models extract more persistent spillover indexes. Such

a feature enables the filtering models to identify the changes in spillovers in a more

timely manner. If the policy maker desires a more persistent spillover source decom-

position that would remain robust to outliers while retaining a reasonable forecasting

performance, we would suggest one of the two adjustments to our methodology: di-
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rectly smoothing out the model-implied spillover measurements by a moving average

recursion; or replacing the innovations term in (5.4) by an average of lagged scores,

say (1/10) ×
∑10

i=1 st−i+1, see also Patton (2006b).

An obvious point of interest is to study the implications of both models during

the onset of the financial crisis. We now discuss the spillover features of different

models on the basis of two prominent examples. As a first example, we notice how

all models identify JP Morgan Chase as the central asset in late 2008 because JPM

is the only financial stock in our asset universe. The individual spillover centralities

are plotted in Figure 5.5. We observe that the filtering model identifies JP Morgan

as the source of spillovers more early than the rolling window approach. Taking a

closer look, we see that the time-varying parameter specification detects two peaks

in the spillover centrality of JP Morgan Chase, following the fall of Lehman Brothers

on Sept 15, 2008 and following the asset purchases of the Troubled Assets Relief

Program (TARP) on October 28, 2008. The rolling window alternative on the other

hand maintains high levels of spillover centrality of JP Morgan Chase for a long time,

even after the market turmoil has come to an end.

As a second tale for spillovers in equity market returns, we study the inferred high

spillover centrality of Honeywell in 2001. In July 3, 2001 the European Commission

stopped the merger of General Electric and Honeywell due to concerns about market

competition. This may have raised some concerns regarding the regulatory environ-

ment, causing some short-term movements in the market. However, it is doubtful
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whether Honeywell as an individual company ignites major market movements. In

retrospect, it turns out that this episode may be classified a “false alarm” in our

systemic risk measurement framework. Such an episode can pinpoint the major dif-

ferences of the alternative modeling frameworks. While the spillover centrality of

Honeywell in the score driven framework is indeed short-lived, the rolling window al-

ternative downgrades the systemic relevance of Honeywell only once the single market

moving observation exits the rolling window sample.
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Rolling window length: 100
TvpVAR HEAVY; c=OLS

(b) Honeywell International

Figure 5.5: Series of spillover centralities for key assets
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5.4 Volatility spillovers

In our context of global equity markets, high-frequency volatility measures are

publicly available from the Oxford Man Institute (Heber et al., 2009). We study daily

realized variance measures over the period from July 8, 2002 to June 9, 2015, with a

pseudo out-of-sample predictive analysis starting from January 2, 2008. We choose

the 5-minute realized variance as the relevant volatility proxy due to its empirical

success across a wide range of applications (Liu et al., 2015).10 To ensure approximate

normality in our system variables, we take logs of realized variances, denoted by

yt = log(RVt). We see from the descriptive statistics in Table 5.10 of Appendix 5.B

that the kurtosis of log variances is indeed much lower than in the equity returns

applications.

The asset universe of international stock indices is listed in Table 5.10 of Appendix

5.B. In our international dataset, we find quite a few missing observations.11 There are

several economic sources that may give rise to missing observations. First, banking

holidays differ across different countries. Second, missing observations may arise

especially due to market frictions in the context of financial crises. Third, if we

observe a zero realized variance measure that may come about due to low liquidity,

we can avoid taking logs of zeros by treating the observation as missing – as opposed

to hardcoding the realized variance to a small number.

10Note that in the context of international markets, realized proxies for covariance matrices are
in general not available due to largely non-overlapping trading hours.

11The missing observations are depicted in Figure 5.10 of Appendix 5.B.
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The advantage of our structural time series formulation is that one is able to

take informational advantage from unbalanced panels (increased information in eq-

uity returns due to a longer data span). Handling the frequently occurring missing

observations is straightforward as the implied score for coefficients with missing infor-

mation can be set to zero (Creal et al., 2014; Durbin and Koopman, 2012). We adjust

score based updating to account for missing observations as described in Appendix

5.C. For the rolling window benchmark, missing observations are less straightforward

to handle. We therefore deal with missing observations by linearly interpolating the

missing observations for the rolling window model, which again acts as a conservative

mechanism to aid the benchmark with artificial additional data from the future.

5.4.1 Multivariate scale dynamics

Spillover dynamics at a high frequency can appear as contemporaneous correlation

patterns when the data is sampled at a lower frequency. For this reason care needs

to be taken in order to account for variation in second moments. We do not find

strong evidence of time-varying volatility of volatility and therefore persevere with

modeling dynamic correlations. The purpose of allowing for the residuals correlation

is to absorb dependence on the contemporaneous market factor. The equicorrelation

matrix structure from Chapter 3 captures a simple factor structure. In short, the

variance model in our spillover system (5.2)– (5.5) is specified by the usual VAR(1)-
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system for location dynamics and the following model for variance matrix

Σt = DtRtDt

Dt = diag ({σi}i=1,...,n)

Rt =




1 ρt . . . ρt

ρt
. . . . . .

...

...
. . . . . . ρt

ρt . . . ρt 1




,

where ρt is driven by GAS(1,1) dynamics, see also Chapter 3 for further exposition.

The modeling choice for the dynamic variance matrix can as well be interpreted as

a particular spillover structure in which all assets mutually affect each other in equal

proportions. We opt for this specification as it helps capture the commonality between

assets, while not distorting the spillover interpretations of the model. Alternatively,

contemporaneous factors can be accounted for by incorporating these into the mea-

surement equation or by considering a model for the residuals of a pre-specified factor

model (see e.g. Giglio et al., 2015).
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5.4.2 Statistical evaluation of alternative VAR

models

We estimate all filtering models via maximum (quasi-)likelihood. Due to the

lack of realized (co-)volatility of volatility (quarticity) measures, we are required to

estimate the volatility and correlation as specified in the previous subsection. Due to

the inherent non-linearities in the model, we do this in a joint single-step estimation

procedure. The TVP-VAR model is estimated via Gaussian maximum likelihood,

while for adaptive LASSO estimation, we maximize the penalized criterion function

and then report the Gaussian likelihood for comparison purposes.

The parameter estimates are reported in Table 5.5. We find a somewhat higher

persistence in the dynamics of the autoregressive matrix when compared to the per-

sistence in correlations. The implications for the spillover measurement indexes are

discussed further below.
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Table 5.5: Hyperparameter estimates of the volatility spillover model

Notes: Estimates of the time-varying VAR model. The long run autoregressive matrix of model
with “c=OLS” is estimated by OLS, while the long run autoregressive matrix of model with
“c=adaLASSO” is estimated by adaptive LASSO. The parameters ωρ, αρ, βρ are the
equicorrelation GAS intercept, score and autoregressive parameters, respectively. Standard errors
are in parentheses.

TvpVAR TvpVAR
c=OLS c=adaLASSO

α 0.0072 0.0074
(0.0009) (0.0008)

β 0.9976 0.9978
(0.0009) (0.0008)

σSPX 0.5811 0.5796
(0.0170) (0.0247)

σFTSE 0.5225 0.5217
(0.0194) (0.0238)

σN225 0.5384 0.5378
(0.0145) (0.0222)

σGDAXI 0.5338 0.5318
(0.0164) (0.0221)

σAORD 0.6759 0.6733
(0.0219) (0.0315)

σFCHI 0.5024 0.5008
(0.0176) (0.0222)

σHSI 0.5749 0.5729
(0.0196) (0.0266)

σKS11 0.5527 0.5506
(0.0177) (0.0256)

σAEX 0.5109 0.5090
(0.0182) (0.0239)

σSSMI 0.4384 0.4372
(0.0162) (0.0213)

σIBEX 0.5263 0.5249
(0.0186) (0.0241)

σNSEI 0.6935 0.6929
(0.0278) (0.0364)

σMXX 0.6936 0.6916
(0.0229) (0.0294)

σBV SP 0.5545 0.5538
(0.0167) (0.0232)

σGSPTSE 0.5667 0.5652
(0.0161) (0.0234)

ωρ 0.0145 0.0578
(0.1261) (0.3270)

αρ 0.0272 0.0231
(0.0128) (0.0317)

βρ 0.9409 0.9618
(0.0633) (0.1215)

QLikl 2, 886 2, 881



The statistical evaluation of alternative volatility spillover models bears some sim-

ilarity with the patterns in return spillovers. We therefore briefly sketch the patterns

to focus on the economic interpretations of the competing models further below. The

time frame of our study spans the period between July 8, 2002 and June 9, 2015 with

an out of sample forecast comparison beginning with January 2, 2008.

We also observe how the filtering model delivers superior short-term forecasts of

volatility spillovers both in-sample and out-of-sample, across time and across different

assets. Table 5.6 reports a consistent forecasting ranking of alternative models accord-

ing to all loss functions used (MAFE, MSFE, negQLIKL). The 100-day rolling window

benchmark is dominated by the 200-day rolling window estimation. Furthermore, we

find that the filtering models outperform the rolling window schemes. Differences

between filtering models are relatively small: the time-varying parameter filtering

model without regularization performs similarly as the time-varying parameter filter-

ing model that uses LASSO estimation of the intercept.12 Figure 5.6 disaggregates the

advantage in the forecasting performance into the cross section of assets. We observe

that the filtering model improves upon the benchmarks for almost all assets – only for

Hong-Kong and Korean stock exchanges the out-of-sample comparison comes close.

Figure 5.7 displays the forecasting comparison across time. In the in-sample evalua-

tion, the rolling window model only outperforms near the initial values. Recall that

in order to avoid numerically optimizing over n2 intercept parameters for the filtering

12A Giacomini-White statistical forecasting test suggest that the LASSO estimation slightly out-
performs the standard filtering benchmark in the current out of sample context, yet the interpretation
of statistical significance is problematic due to high power of tests in large datasets.
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model, we have estimated the intercept in the dynamic VAR updating recursion (5.3)

via a targeting procedure. The unconditional autoregressive matrix is also used as

the initial value for the time-varying VAR parameters. As the filtering model obtains

the steady dynamics over the entire in-sample period, data from around the initial

period is more informative for explaining the dynamics within the asset universe of

our study. Such a pattern is reassuring in the sense of indicating time-variation in the

behavior of the predictive system. We see that the advantage of the filtering model

is valid throughout the entire hold-out sample.
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(c) Negative QLikl

 
Rolling window length: 100
Rolling window length: 200
TvpVAR; c=OLS + DynCorr
TvpVAR; c=adaLasso;IC=gcv + DynCorr

(d) Legend

Figure 5.6: Relative forecasting performance comparison across specific assets

Notes: The solid lines depict the in-sample fit, while the dotted lines depict the out-of-sample fit.

Panels (a) and (b) report
(∑T

s=1 ls,Alternative

)
/
(∑T

s=1 ls,Benchmark

)
with ls ∈ {MSFEs,MAFEs},

while panel (c) reports (1/T )
∑T
s=1 (ls,Alternative − ls,Benchmark) with ls = −QLikls.
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Table 5.6: Pairwise Giacomini-White predictive comparisons

Notes: Benchmark models are depicted in columns, while the alternative forecasting competitors are reported in rows. The
non-parenthesized entries report differences in losses between benchmark and competitor models. The parenthesized p-values correspond
to that of a formal forecasting comparison test of Giacomini and White (2006).

Rolling window length: 100 Rolling window length: 200 TvpVAR; c=OLS
negQLIKL MSFE MAFE negQLIKL MSFE MAFE negQLIKL MSFE MAFE

Rolling window length: 200 −1817.703∗ −739.389∗ −485.227∗

(P-Value) (0.000) (0.000) (0.000)
TvpVAR; c=OLS −3116.891∗ −1239.205∗ −867.300∗ −1299.188∗ −499.816∗ −382.073∗

(P-Value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TvpVAR; c=adaLASSO −3131.583∗ −1249.137∗ −875.038∗ −1313.880∗ −509.747∗ −389.811∗ −14.692∗ −9.931∗ −7.737∗

(P-Value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.100) (0.051) (0.037)
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Rolling window length: 100
Rolling window length: 200
TvpVAR; c=OLS + DynCorr
TvpVAR; c=adaLasso;IC=gcv + DynCorr

(d) Legend

Figure 5.7: Relative forecasting performance comparison across time

Notes: The start of the out-of-sample evaluation period on January 1, 2008 is depicted by a

horizontal line. Panels (a) and (b) report
(∑t

s=1 ls,Alternative

)
/
(∑t

s=1 ls,Benchmark

)
with

ls ∈ {MSFEs,MAFEs}, while panel (c) reports
∑t
s=1 (ls,Alternative − ls,Benchmark) with

ls = −QLikls.

5.4.3 Spill-over implications of alternative VAR

models

The unconditional spillover descriptions in Table 5.7 verify the centrality of the US

stock market, followed by the Canadian market. Asian markets seem to be influenced
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by European and North-American markets, while they have a less strong impact on

other markets. Furthermore, we see that the more spillover central markets also have

positive net contribution to the rest of the system. The less spillover central Asian

markets are on the receiving end of the shocks.

Table 5.7: Unconditional volatility spillover centralities, over a horizon of 10 days

Notes: ’To’ column corresponds to out-degree and ’From’ corresponds to in-degree of the variance
decomposition network.

System Country Spillover To From Net
Centrality (most influential) (most vulnerable)

SPX US 16.0 171.2 72.2 99.0
GSPTSE Canada 11.8 126.4 66.7 59.7
FTSE FTSE 10.0 107.0 84.9 22.1
AEX Netherlands 9.3 99.2 85.5 13.7
GDAXI Germany 9.1 96.9 80.8 16.1
FCHI France 8.5 90.9 86.8 4.1
MXX Mexico 7.6 81.5 56.0 25.5
SSMI Switzerland 6.7 71.7 88.0 −16.3
IBEX Spain 6.5 70.1 79.0 −8.9
BVSP Brazil 3.9 41.9 70.9 −28.9
AORD Australia 2.8 29.5 74.6 −45.1
KS11 Korea 2.7 28.9 64.7 −35.8
N225 Japan 1.9 20.4 65.8 −45.4
NSEI India 1.9 20.1 42.7 −22.6
HSI China 1.4 14.9 52.0 −37.1

Table 5.8 decomposes the spillovers to a more granular level. We observe that the

emerging markets have the most idiosyncratic behavior. This can be seen from the

dominant role of own lagged shocks in explaining the variance of emerging markets’

returns and from the relatively little influence on other markets. By contrast, open

developed economies display a pattern of sharing a large portion of the variance with

other markets. For instance, this is the case for SPX and FTSE markets.

203



C
H
A
P
T
E
R

5.
P
R
E
D
IC

T
IV

E
S
Y
S
T
E
M
S
A
N
D

D
Y
N
A
M
IC

S
P
IL
L
O
V
E
R
S

Table 5.8: Unconditional volatility spillover table, over a horizon of 10 days
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SE

From

SPX 27.8 8.8 1.4 7.9 1.8 7.2 0.9 2.6 7.9 5.7 5.3 0.6 6.6 3.7 11.6 72.2
FTSE 14.4 15.1 1.2 10.8 2.4 10.2 1.1 1.7 11.2 7.7 8.1 0.4 4.2 2.3 9.1 84.9
N225 10.8 6.7 34.2 5.1 1.6 4.4 1.5 3.8 5.9 5.3 2.7 1.8 6.1 3.3 6.9 65.8
GDAXI 13.2 10.9 1.2 19.2 1.0 11.7 0.6 1.9 12.8 8.1 8.6 0.2 2.0 2.4 6.5 80.8
AORD 11.3 6.2 1.2 3.4 25.4 4.5 1.0 0.7 4.0 4.0 5.2 1.1 13.8 2.7 15.4 74.6
FCHI 13.5 11.1 0.9 12.7 2.0 13.2 0.6 1.1 12.4 7.2 10.8 0.1 3.5 2.1 8.7 86.8
HSI 8.2 6.1 1.6 3.0 1.1 2.9 48.0 4.4 3.8 3.4 2.0 4.8 2.8 2.6 5.2 52.0
KS11 13.7 6.6 3.1 6.7 0.3 3.7 2.4 35.3 5.9 5.2 0.5 4.8 2.1 4.4 5.2 64.7
AEX 14.0 11.5 1.2 13.1 1.5 11.7 0.7 1.7 14.5 7.8 8.6 0.2 3.1 2.4 7.8 85.5
SSMI 14.3 11.5 1.9 11.5 2.2 9.7 1.0 2.2 11.2 12.0 7.2 0.5 4.1 2.5 8.1 88.0
IBEX 11.7 9.7 0.6 10.5 2.7 12.2 0.5 0.2 10.1 6.0 21.0 0.1 3.6 1.6 9.5 79.0
NSEI 6.0 2.9 2.0 1.3 1.2 1.0 2.5 4.3 2.0 1.9 0.1 57.3 7.2 3.8 6.4 42.7
MXX 11.7 3.8 1.4 1.7 5.0 2.7 0.7 0.7 2.4 2.3 2.6 2.1 44.0 4.6 14.3 56.0
BVSP 14.2 4.9 1.9 5.0 1.9 3.9 1.0 2.8 4.7 3.4 2.7 2.2 10.9 29.1 11.4 70.9
GSPTSE 14.1 6.1 0.7 4.2 4.9 5.3 0.6 0.8 4.8 3.5 5.6 1.0 11.3 3.6 33.3 66.7

To 171.2 107.0 20.4 96.9 29.5 90.9 14.9 28.9 99.2 71.7 70.1 20.1 81.5 41.9 126.4 1070.4
CiO 199.0 122.1 54.6 116.1 54.9 104.1 62.9 64.2 113.7 83.7 91.1 77.4 125.5 71.1 159.7 1500.0

Notes: To , Contribution To Others; From , Contribution from Others; CiO , Contribution Including Own.
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Conditional spillover properties are plotted in Figure 5.8. We observe also in this

example how the GAS implied spillover measures adapt more quickly to changes in

market conditions. In particular, the spillover measures of the filtering models have

much less of a delay in returning to the pre-crisis levels.

When calculating spillover measures, we are required to make a choice regarding

the contemporaneous covariance matrix entering the variance decomposition in (5.1).

By having already accounted for time-varying correlation levels in our filtering model,

we refrain from systematically overemphasizing periods of high volatilities and corre-

lations. As the specific heterogeneous covariance structure does not enter the score

driven updating recursion for the location parameters in (5.2) – (5.4), the impact of

not having specified a heterogeneous correlation structure is to equally weigh each ob-

servation equation within the full system criterion function (see also Koopman et al.,

2015). As an additional robustness check, we therefore estimate dynamic covariances

as the final stage of a multistep estimation procedure by fitting Constant Conditional

Correlation (CCC) and Dynamic Conditional Correlation (DCC) models to the stan-

dardized residuals. The alternative spillover indexes are plotted in Figure 5.11. We

find that CCC and DCC models have relatively similar implications throughout,

therefore it is reassuring to observe that the correlation model does not entirely drive

the results. The dynamic equicorrelation implied spillover measures constitute an

upper bound on the spillover measure. Hence, there is more room to diversification

than a equicorrelation factor spillover structure would imply. Interestingly, we find
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that the upper bound of the dynamic equicorrelation model is binding during reces-

sions, while during macroeconomic expansions the diversification benefits are more

substantial.

While there is rich time-variation in the dynamic VAR parameters, the spillover

measures implied by a score-driven framework are much more stable than the rolling-

window implied counterparts.13 This could have to do with the high degree of per-

sistence in realized volatility measures (Chiriac and Voev, 2011; Corsi, 2009). As

the statistical performance of the filtering model is superior, it seems that a rolling

window specification creates additional parameter uncertainty. The high degree of

persistence in realized volatility implies that an observation more than 100 days ago

still receives a relatively high weight (β̂100 ≈ 0.9978100 ≈ 0.8) within the GAS frame-

work, while the rolling window approach cuts off all observations in further past. This

results in superior performance of the 200-day rolling window when compared to a

100-day rolling window. However, within the GAS framework we are able to estimate

the persistence of coefficient paths, such that the informational decay within the GAS

model is much slower, effectively pooling more information into the filtered parameter

paths.

13We report all spillover series for alternative models in Figure 5.12 of Appendix 5.B.
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Rolling window length: 100
Rolling window length: 200
TvpVAR; c=OLS + DynCorr
TvpVAR; c=adaLasso;IC=gcv + DynCorr
Avg System Correlation

Figure 5.8: Transformed spillover index time series

Notes: The DCC model is used to describe the spillover measures. In order to make the systemic risk indices comparable, we transformed
the series to have mean zero and standard deviation one. The colored lines correspond to standardnormalized spillover indices of
competing models, see also panel (d) of Figure 5.7. In particular, the red line corresponds to 100-day rolling window estimation, the green
line corresponds to a 200-day rolling window estimation, the light blue line corresponds to the TvpVAR model, and the purple line
corresponds to the TvpVAR model with LASSO-regularized estimation. The black dotted line depicts the dynamic equicorrelation among
equity returns, see also Chapter 3.
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5.5 Conclusions

We monitor price spillover externalities in equity markets. We show how fully

specified models for dynamic predictive systems can deliver superior forecasts and

more precise spillover measures. In a statistical forecasting comparison, we find that

most of the forecasting benefits stem from temporal weighting of the score-based

innovations. While statistically significant, the gains of a LASSO-based regularization

are modest in economic terms. From an economic perspective, the proposed approach

delivers more timely indicators of financial ripple effects that could be driven by

systemic risk.

There are further extensions that could be considered. For instance, an appealing

alternative approach would be to consider time-varying factor augmented vector au-

toregressive (FAVAR) models to uncover the spillover dynamics. Such an approach

would require one to work out the spillover interpretations of the FAVAR-based vari-

ance decomposition. In particular, if the factors are spanned by fundamental financial

and macroeconomic quantities, then the increased magnitudes of spillovers in times

of financial crises could be given the true meaning of contagion.
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5.A Return Spillovers

Table 5.9: Descriptive statistics for daily US stock data

Symbol Country Kurtosis Std Min Max

AA Alcoa Inc. 10.760 2.693 −17.479 20.894
AXP American Express Company 12.815 2.419 −19.370 18.754
BA The Boeing Company 9.338 1.937 −19.407 14.360
CAT Caterpillar Inc. 7.764 2.076 −15.728 13.693
GE General Electric Company 11.865 2.011 −13.665 18.003
HD The Home Depot 8.851 1.952 −15.178 13.145
HON Honeywell International 11.111 2.001 −19.095 11.544
IBM International Business Machines 9.700 1.581 −10.691 11.330
JPM JP Morgan Chase 16.110 2.693 −23.235 22.385
KO Coca-Cola 12.810 1.255 −10.611 12.990
MCD McDonald’s 9.583 1.457 −13.746 8.945
PFE Pfizer 8.880 1.603 −11.803 9.701
PG Procter & Gamble 9.757 1.183 −8.336 9.706
WMT Wal-Mart Stores Inc. 7.949 1.365 −8.417 10.492
XOM Exxon Mobil 14.952 1.575 −15.051 15.839
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Figure 5.9: Individual return spillover series

Notes: The solid lines correspond to the TvpVAR model, while the dashed lines correspond to a rolling window of 100 days.
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5.B Volatility Spillovers
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Figure 5.10: Number of available assets in international stock index data

Table 5.10: Descriptive statistics for international stock index data

Symbol Country Kurtosis Std Min Max # Missings

SPX US 3.553 1.097 −3.557 4.915 141
FTSE UK 3.217 1.049 −2.457 4.651 133
N225 Japan 3.991 0.857 −2.519 3.901 251
GDAXI Germany 3.226 1.047 −2.893 4.169 108
AORD Australia 3.465 0.975 −3.107 4.009 155
FCHI France 3.096 1.002 −2.990 4.148 82
HSI China 5.067 0.766 −2.372 4.388 451
KS11 Korea 3.507 0.940 −2.468 4.486 187
AEX Netherlands 3.105 1.046 −3.382 4.005 82
SSMI Switzerland 3.641 0.951 −1.975 4.390 146
IBEX Spain 2.689 1.017 −3.069 3.820 109
NSEI India 4.083 0.951 −3.074 5.291 193
MXX Mexico 3.556 0.972 −2.653 4.521 136
BVSP Brazil 4.879 0.773 −2.795 3.717 208
GSPTSE Canada 3.982 1.052 −2.795 4.818 156
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Notes: The underlying location dynamics are captured by a TvpVAR model with OLS intercept targeting. The alternative correlation
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CHAPTER 5. PREDICTIVE SYSTEMS AND DYNAMIC SPILLOVERS

5.C Handling missing observations

We collect below the necessary notation and implementation details for a time-

varying parameter VAR in an environment where the number of missing observations

can follow any arbitrary patterns. In a n-dimensional vector autoregression of the

possibly only partially observed data vector yt, the number of available observations

at time t is denoted by nt. Furthermore, define the (nt × n)-dimensional selection

matrix St with the property that Styt collects the non-missing observations, while

(S⊤
t St)

⊥ is spanned by missing observations. The available data can then be modeled

by

Styt =
(
StΦtS

⊤
t−1

)
St−1yt−1 + Stut,

or alternatively, in terms of a dynamic regression

Styt =
(
Int

⊗ (St−1yt−1)
⊤
)
× (St ⊗ St−1) vec

(
Φ⊤
t

)
+ Stut,

such that we adopt non-zero innovations for coefficients selected by St ⊗ St−1.
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Chapter 6

Conclusion

While the introduction had put the individual chapters into a common perspective,

we wrap up by first specifically highlighting some of the most central results of this

monograph. Finally, we critically appraise the content of this thesis by discussing

extensions that could be considered for future research.

6.1 Summary of contributions

In the second chapter we have studied score driven correlation models from the

viewpoint of stochastic recurrence equations. As the conditions for stochastic fixed

points seem both analytically and numerically intangible, we need to restrict the pa-

rameter space in favor of making the conditions manageable. The simplification has

some undesirable side-effects as it has introduced an indeterminacy regarding square
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roots of the stochastic correlation matrix, which is potentially cumbersome as the

indeterminacy is with respect to functions that index the relevant matrix decomposi-

tions. Fortunately, it turns out that across all possible Cholesky factorizations, only

the symmetric matrix root has the property of cancelling out the undetermined terms

in the stochastic fixed point conditions. Furthermore, we develop an efficient algo-

rithm of verifying the new stochastic fixed point conditions and empirically illustrate

the workings of score driven correlation models. It turns out that the indetermi-

nacy regarding the appropriate Cholesky root can play a decisive role regarding the

empirical usefulness of our simplified approach.

We proceed in Chapter 3 by developing an alternative approach that would be

applicable for analyzing high-dimensional dynamic correlation models. On the one

hand, the proposed approach delivers a precise and an intuitive description of the

stability properties of a wide class of score driven models. On the other hand, while

Chapter 2 had the benefit of guaranteeing pathwise uniqueness of the stable solution,

which also nicely delivers invertibility conditions and maximum likelihood estimation,

our statements in terms of geometric ergodicity are of distributional nature and need

to condition upon invertibility of the model. We have succeeded in establishing some

theoretical results regarding geometric ergodicity and a mis-specification robust quasi

maximum likelihood estimation routine. As an empirical modeling strategy, we follow

a radically simplistic correlation modeling strategy, driven by a single state variable.

We show how our approach can improve upon both score driven and non-score driven
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methods in the literature.

The fourth chapter extends the class of score driven models to allow for changes

in deep, statistically structural, parameters of the model. We recognize that the

GAS filter is a particularly well suited, but yet still mis-specified method of capturing

stylized facts of various economic data. As the observation driven approach reveals the

latent state variables as observable quantities, we can directly measure the empirical

counterparts of the model-implied moment conditions on the state variables. This

enables us to adjust the model transition dynamics to account for conditional and

unconditional filter misspecifications. We demonstrate how the new filtering method

improves upon the forecasting performance of highly competitive GAS models across

different economic applications.

The fifth chapter deals with monitoring price spillover externalities in equity mar-

kets. We show how proper models for dynamic predictive systems can deliver superior

forecasts and analyze the robustness of the spillover measures to the choice of filtering

models. If a better description of the predictive relations translates to better systemic

risk measures, then our proposed approach may deliver an attractive tool for policy

makers.
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6.2 Further extensions

A common theme of this thesis has been to understand specific models for multi-

variate financial time series. Even within this narrow field, our contributions to the

literature have clear limitations, which we will highlight next. Such a discussion also

clarifies the potential for further research.

First of all, understanding high-dimensional dynamic correlation models still poses

a challenge to the econometrics profession. While diagnostic tests for residual cross-

correlation undeniably reject our strict equicorrelation restriction in Chapter 3, it is

still unclear in which direction the simplistic model should be generalized. The desired

alternative model should deliver interpretable estimates, yet the practical estimation

considerations require such a model to be sufficiently parsimonious. An interesting

extension would be to allow for multiple correlation factors, where parsimony would

be enforced within suitably chosen clusters. For instance, one could cluster individual

equity return correlations across industry groups. However, the industry classifica-

tion may not always deliver good descriptions – think for example of General Electric,

which recently has been described as more of a financial conglomerate than an in-

dustrial company. Furthermore, it is unclear how to reconcile easily interpretable

clustering methods with positive definiteness requirements of correlation matrices.

Second, the difficulties we have faced in justifying frequentist estimation meth-

ods beg the question whether Bayesian methods could prove useful in the context of

score driven models. We have focused on consistency arguments, while asymptotic
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distributional properties may have small-sample distortions in the face of heavy tailed

observations and the often observed near unit root behavior of time-varying parame-

ters. Furthermore, it would be interesting to further investigate whether score driven

models could benefit from the usual merits of a Bayesian approach that may possibly

guard one against overfitting in the face of parameter uncertainty.

Third, it would be worthwhile to give a second thought to the concept of statistical

efficiency in high-dimensional parsimonious models. In Chapter 3, we considered

Gaussian quasi maximum likelihood estimation of the static parameters in order to

remain guarded against mis-specification of the observation density. The Gaussianity

assumption is undeniably not the best description of the data, however due to the

large amounts of data we would not expect the choice of the statistical criterion

function to be a first order issue.

Fourth, it would be a worthy challenge to develop asymptotic theory for the

tvGAS models in Chapter 4. A further interesting extension would be to consider

more concurrent sources of misspecification.

Finally, the interpretation of spillovers in dynamic predictive systems seems neb-

ulous: it is not entirely clear how to give the spillovers an intuitive meaning. The

spillover centrality of a single asset could be driven by its high loading on a particular

underlying risk factor. For this reason, an appealing alternative approach would be

to consider time-varying factor augmented vector autoregressive (FAVAR) models to

uncover the spillover dynamics. Such an approach would require one to work out the
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spillover interpretations of the FAVAR-based variance decomposition. In particular,

if the factors are spanned by fundamental financial and macroeconomic quantities,

then the increased magnitudes of spillovers in times of financial crises could be given

the true meaning of contagion.
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Summary

This dissertations presents four articles in four chapters. Each chapter adopts
various statistical time series methods to analyze co-movement in financial markets.
In particular, the following four questions are answered: 1) What are the statistical
properties of GAS (Generalized Autoregressive Score) time series correlation models?
2) How can we model correlations in high-dimensional datasets? 3) How can we adapt
dynamic filtering models, if we see that the model does not resemble characteristics
of the data? 4) If we monitor financial spillovers, how can we dynamically model its
characteristics?

Chapter 2 applies a simulation-based method to answer the first question. We
discover that the non-uniquess of matrix square root introduces an additional ingre-
dient to determine the stability of the model. Moreover, we find that the symmetric
matrix square root offers the best overall results.

Chapter 3 introduces a model for high-dimensional dynamic correlation data. This
model can be estimated by quasi-Gaussian maximum-likelihood methods, which en-
sures the usual statistical optimality properties. We demonstrate numerical efficiency
in evaluation of the model. We also develop a dynamic correlation model which in-
corporates data from both option markets and equity markets. This enables us to
monitor correlation risk premia in real time.

Chapter 4 presents a systematic approach to adopt filtering equations to misspec-
ification of the model. Once we recognize the misfit of the dynamic filtering model
with respect to a concrete property of the data, we are able to come up with a new,
improved model. We demonstrate the usefulness of our method using various practical
examples.

Chapter 5 introduces a dynamic vector autoregressive model to monitor spillover
effects in financial markets. So far researchers have used ad hoc rolling windows
methods to analyze comovement connectedness networks. The new model provides
more accurate predictions and yields different, more reactive, measures of spillovers.
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